Superpixel based recursive least-squares method for lossless compression of hyperspectral images View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Ali Can Karaca, Mehmet Kemal Güllü

ABSTRACT

Filtering based compression methods have become a popular research topic in lossless compression of hyperspectral images. Recursive least squares (RLS) based prediction methods provide better decorrelation performance among the filtering based methods. In this paper, two superpixel segmentation based RLS methods, namely SuperRLS and B-SuperRLS, are investigated for lossless compression of hyperspectral images. The proposed methods present a novel parallelization approach for RLS based prediction method. In the first step of SuperRLS, superpixel segmentation is applied to hyperspectral image. Afterwards, hyperspectral image is partitioned into multiple small regions according to the superpixel boundaries. Each region is predicted with RLS method in parallel, and prediction residuals are encoded via arithmetic encoder. Additionally, superpixel based prediction approach provides region of interest compression capability. B-SuperRLS, which is bimodal version of SuperRLS, evaluates both spectral and spatio-spectral correlations for prediction. The performance of the proposed methods are exhaustively analysed in terms of superpixel number, input vector length and number of parallel nodes, used in the prediction. Experimental results show that the proposed parallel architecture dramatically reduces the computation time, and achieves lower bit-rate performances among the state-of-the-art methods. More... »

PAGES

903-919

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11045-018-0590-4

DOI

http://dx.doi.org/10.1007/s11045-018-0590-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1104214096


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Kocaeli", 
          "id": "https://www.grid.ac/institutes/grid.411105.0", 
          "name": [
            "Electronics and Telecommunications Engineering, Engineering Faculty (Building B), Umuttepe Campus, Kocaeli University, 41380, Izmit, Kocaeli, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Karaca", 
        "givenName": "Ali Can", 
        "id": "sg:person.016532376402.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016532376402.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Kocaeli", 
          "id": "https://www.grid.ac/institutes/grid.411105.0", 
          "name": [
            "Electronics and Telecommunications Engineering, Engineering Faculty (Building B), Umuttepe Campus, Kocaeli University, 41380, Izmit, Kocaeli, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "G\u00fcll\u00fc", 
        "givenName": "Mehmet Kemal", 
        "id": "sg:person.013557127335.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013557127335.90"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1117/1.jrs.10.015010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006101364"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/42411.42415", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025022195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/a9010016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039014855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.isprsjprs.2016.12.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048721851"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2016je005028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052549026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/el.2013.1315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056754251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jstars.2011.2162091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061332569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jstars.2013.2247975", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061332911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jstars.2014.2320754", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061333297"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jstars.2015.2497163", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061334004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lgrs.2007.900695", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061358496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lgrs.2008.917598", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061358737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lgrs.2009.2024175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061358860"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lgrs.2010.2041630", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061358992"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lgrs.2012.2191531", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061359527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lsp.2005.862604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061376679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.2003.820885", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061609070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.2009.2015291", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061610977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.2016.2585495", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061614452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.2016.2603527", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061614543"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.2016.2613848", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061614580"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.2016.2632863", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061614672"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.2016.2633279", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061614673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2012.120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061744236"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.2016.2642951", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084205968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3837/tiis.2017.07.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091022774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/rs9100973", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091875996"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/2150704x.2017.1375612", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092422413"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icip.2015.7351279", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093524363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/rast.2017.8002966", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095111168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1109587436", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "Filtering based compression methods have become a popular research topic in lossless compression of hyperspectral images. Recursive least squares (RLS) based prediction methods provide better decorrelation performance among the filtering based methods. In this paper, two superpixel segmentation based RLS methods, namely SuperRLS and B-SuperRLS, are investigated for lossless compression of hyperspectral images. The proposed methods present a novel parallelization approach for RLS based prediction method. In the first step of SuperRLS, superpixel segmentation is applied to hyperspectral image. Afterwards, hyperspectral image is partitioned into multiple small regions according to the superpixel boundaries. Each region is predicted with RLS method in parallel, and prediction residuals are encoded via arithmetic encoder. Additionally, superpixel based prediction approach provides region of interest compression capability. B-SuperRLS, which is bimodal version of SuperRLS, evaluates both spectral and spatio-spectral correlations for prediction. The performance of the proposed methods are exhaustively analysed in terms of superpixel number, input vector length and number of parallel nodes, used in the prediction. Experimental results show that the proposed parallel architecture dramatically reduces the computation time, and achieves lower bit-rate performances among the state-of-the-art methods.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11045-018-0590-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1046977", 
        "issn": [
          "0923-6082", 
          "1573-0824"
        ], 
        "name": "Multidimensional Systems and Signal Processing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "30"
      }
    ], 
    "name": "Superpixel based recursive least-squares method for lossless compression of hyperspectral images", 
    "pagination": "903-919", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7fe738abaf43708ab46faea9cd7a56f7dff6eb7e905a62a6c9296a500259d69d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11045-018-0590-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1104214096"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11045-018-0590-4", 
      "https://app.dimensions.ai/details/publication/pub.1104214096"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78974_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11045-018-0590-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11045-018-0590-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11045-018-0590-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11045-018-0590-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11045-018-0590-4'


 

This table displays all metadata directly associated to this object as RDF triples.

160 TRIPLES      21 PREDICATES      58 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11045-018-0590-4 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N186b2770bd984935a6e5650db9cda3df
4 schema:citation https://app.dimensions.ai/details/publication/pub.1109587436
5 https://doi.org/10.1002/2016je005028
6 https://doi.org/10.1016/j.isprsjprs.2016.12.009
7 https://doi.org/10.1049/el.2013.1315
8 https://doi.org/10.1080/2150704x.2017.1375612
9 https://doi.org/10.1109/icip.2015.7351279
10 https://doi.org/10.1109/jstars.2011.2162091
11 https://doi.org/10.1109/jstars.2013.2247975
12 https://doi.org/10.1109/jstars.2014.2320754
13 https://doi.org/10.1109/jstars.2015.2497163
14 https://doi.org/10.1109/lgrs.2007.900695
15 https://doi.org/10.1109/lgrs.2008.917598
16 https://doi.org/10.1109/lgrs.2009.2024175
17 https://doi.org/10.1109/lgrs.2010.2041630
18 https://doi.org/10.1109/lgrs.2012.2191531
19 https://doi.org/10.1109/lsp.2005.862604
20 https://doi.org/10.1109/rast.2017.8002966
21 https://doi.org/10.1109/tgrs.2003.820885
22 https://doi.org/10.1109/tgrs.2009.2015291
23 https://doi.org/10.1109/tgrs.2016.2585495
24 https://doi.org/10.1109/tgrs.2016.2603527
25 https://doi.org/10.1109/tgrs.2016.2613848
26 https://doi.org/10.1109/tgrs.2016.2632863
27 https://doi.org/10.1109/tgrs.2016.2633279
28 https://doi.org/10.1109/tgrs.2016.2642951
29 https://doi.org/10.1109/tpami.2012.120
30 https://doi.org/10.1117/1.jrs.10.015010
31 https://doi.org/10.1145/42411.42415
32 https://doi.org/10.3390/a9010016
33 https://doi.org/10.3390/rs9100973
34 https://doi.org/10.3837/tiis.2017.07.013
35 schema:datePublished 2019-04
36 schema:datePublishedReg 2019-04-01
37 schema:description Filtering based compression methods have become a popular research topic in lossless compression of hyperspectral images. Recursive least squares (RLS) based prediction methods provide better decorrelation performance among the filtering based methods. In this paper, two superpixel segmentation based RLS methods, namely SuperRLS and B-SuperRLS, are investigated for lossless compression of hyperspectral images. The proposed methods present a novel parallelization approach for RLS based prediction method. In the first step of SuperRLS, superpixel segmentation is applied to hyperspectral image. Afterwards, hyperspectral image is partitioned into multiple small regions according to the superpixel boundaries. Each region is predicted with RLS method in parallel, and prediction residuals are encoded via arithmetic encoder. Additionally, superpixel based prediction approach provides region of interest compression capability. B-SuperRLS, which is bimodal version of SuperRLS, evaluates both spectral and spatio-spectral correlations for prediction. The performance of the proposed methods are exhaustively analysed in terms of superpixel number, input vector length and number of parallel nodes, used in the prediction. Experimental results show that the proposed parallel architecture dramatically reduces the computation time, and achieves lower bit-rate performances among the state-of-the-art methods.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree false
41 schema:isPartOf N6cad1d68bac44c14bfd3d1a889758c1a
42 Ne65e2a2636eb47e48ca869adbd317bc4
43 sg:journal.1046977
44 schema:name Superpixel based recursive least-squares method for lossless compression of hyperspectral images
45 schema:pagination 903-919
46 schema:productId N5ee4828f6c8b48d79d110802d124a763
47 N9131cef0b0d44bbe90e45f4f57e52f26
48 Nef89d7455c224b958447a4f416145f1e
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104214096
50 https://doi.org/10.1007/s11045-018-0590-4
51 schema:sdDatePublished 2019-04-11T13:21
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher N060676b8a05d4a289ce586b2f033eff4
54 schema:url https://link.springer.com/10.1007%2Fs11045-018-0590-4
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N060676b8a05d4a289ce586b2f033eff4 schema:name Springer Nature - SN SciGraph project
59 rdf:type schema:Organization
60 N186b2770bd984935a6e5650db9cda3df rdf:first sg:person.016532376402.26
61 rdf:rest Nf94f74c3cae84569a61109cbd26288ee
62 N5ee4828f6c8b48d79d110802d124a763 schema:name doi
63 schema:value 10.1007/s11045-018-0590-4
64 rdf:type schema:PropertyValue
65 N6cad1d68bac44c14bfd3d1a889758c1a schema:issueNumber 2
66 rdf:type schema:PublicationIssue
67 N9131cef0b0d44bbe90e45f4f57e52f26 schema:name readcube_id
68 schema:value 7fe738abaf43708ab46faea9cd7a56f7dff6eb7e905a62a6c9296a500259d69d
69 rdf:type schema:PropertyValue
70 Ne65e2a2636eb47e48ca869adbd317bc4 schema:volumeNumber 30
71 rdf:type schema:PublicationVolume
72 Nef89d7455c224b958447a4f416145f1e schema:name dimensions_id
73 schema:value pub.1104214096
74 rdf:type schema:PropertyValue
75 Nf94f74c3cae84569a61109cbd26288ee rdf:first sg:person.013557127335.90
76 rdf:rest rdf:nil
77 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
78 schema:name Information and Computing Sciences
79 rdf:type schema:DefinedTerm
80 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
81 schema:name Artificial Intelligence and Image Processing
82 rdf:type schema:DefinedTerm
83 sg:journal.1046977 schema:issn 0923-6082
84 1573-0824
85 schema:name Multidimensional Systems and Signal Processing
86 rdf:type schema:Periodical
87 sg:person.013557127335.90 schema:affiliation https://www.grid.ac/institutes/grid.411105.0
88 schema:familyName Güllü
89 schema:givenName Mehmet Kemal
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013557127335.90
91 rdf:type schema:Person
92 sg:person.016532376402.26 schema:affiliation https://www.grid.ac/institutes/grid.411105.0
93 schema:familyName Karaca
94 schema:givenName Ali Can
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016532376402.26
96 rdf:type schema:Person
97 https://app.dimensions.ai/details/publication/pub.1109587436 schema:CreativeWork
98 https://doi.org/10.1002/2016je005028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052549026
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/j.isprsjprs.2016.12.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048721851
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1049/el.2013.1315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056754251
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1080/2150704x.2017.1375612 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092422413
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1109/icip.2015.7351279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093524363
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1109/jstars.2011.2162091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061332569
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1109/jstars.2013.2247975 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061332911
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1109/jstars.2014.2320754 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061333297
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1109/jstars.2015.2497163 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061334004
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1109/lgrs.2007.900695 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061358496
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1109/lgrs.2008.917598 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061358737
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1109/lgrs.2009.2024175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061358860
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1109/lgrs.2010.2041630 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061358992
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1109/lgrs.2012.2191531 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061359527
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1109/lsp.2005.862604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061376679
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1109/rast.2017.8002966 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095111168
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1109/tgrs.2003.820885 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061609070
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1109/tgrs.2009.2015291 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061610977
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1109/tgrs.2016.2585495 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061614452
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1109/tgrs.2016.2603527 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061614543
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1109/tgrs.2016.2613848 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061614580
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1109/tgrs.2016.2632863 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061614672
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1109/tgrs.2016.2633279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061614673
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1109/tgrs.2016.2642951 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084205968
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1109/tpami.2012.120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061744236
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1117/1.jrs.10.015010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006101364
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1145/42411.42415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025022195
151 rdf:type schema:CreativeWork
152 https://doi.org/10.3390/a9010016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039014855
153 rdf:type schema:CreativeWork
154 https://doi.org/10.3390/rs9100973 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091875996
155 rdf:type schema:CreativeWork
156 https://doi.org/10.3837/tiis.2017.07.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091022774
157 rdf:type schema:CreativeWork
158 https://www.grid.ac/institutes/grid.411105.0 schema:alternateName University of Kocaeli
159 schema:name Electronics and Telecommunications Engineering, Engineering Faculty (Building B), Umuttepe Campus, Kocaeli University, 41380, Izmit, Kocaeli, Turkey
160 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...