Adaptive resource management algorithm for target tracking in radar network based on low probability of intercept View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-10

AUTHORS

Chenguang Shi, Jianjiang Zhou, Fei Wang

ABSTRACT

In this paper, a low probability of intercept (LPI) performance driven adaptive resource management algorithm for target tracking in a radar network is presented, where the radar network consists of a dedicated radar transmitter and multiple receivers. Firstly, the intercept probability for radar network systems is derived. Then, an adaptive resource management scheme based on LPI is proposed, in which a novel objective function for LPI performance is defined and minimized by optimizing the revisit interval, dwell time, and transmit power in radar networks to guarantee a specific target tracking accuracy with passive time difference of arrival and frequency difference of arrival cooperation. Numerical simulations demonstrate the superior performance of the proposed adaptive resource management scheme over other methods via Monte Carlo simulations. More... »

PAGES

1203-1226

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11045-017-0494-8

DOI

http://dx.doi.org/10.1007/s11045-017-0494-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1085409402


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1005", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Communications Technologies", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/10", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Technology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Nanjing University of Aeronautics and Astronautics", 
          "id": "https://www.grid.ac/institutes/grid.64938.30", 
          "name": [
            "Key Laboratory of Radar Imaging and Microwave Photonics, Ministry of Education, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shi", 
        "givenName": "Chenguang", 
        "id": "sg:person.07414674316.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07414674316.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing University of Aeronautics and Astronautics", 
          "id": "https://www.grid.ac/institutes/grid.64938.30", 
          "name": [
            "Key Laboratory of Radar Imaging and Microwave Photonics, Ministry of Education, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhou", 
        "givenName": "Jianjiang", 
        "id": "sg:person.014533556771.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014533556771.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing University of Aeronautics and Astronautics", 
          "id": "https://www.grid.ac/institutes/grid.64938.30", 
          "name": [
            "Key Laboratory of Radar Imaging and Microwave Photonics, Ministry of Education, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Fei", 
        "id": "sg:person.013736176371.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013736176371.59"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1155/2014/654561", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006687727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/s16122072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009668151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sigpro.2014.11.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018514893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13634-015-0293-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025373752", 
          "https://doi.org/10.1186/s13634-015-0293-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13634-015-0293-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025373752", 
          "https://doi.org/10.1186/s13634-015-0293-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/s13634-016-0411-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047295635", 
          "https://doi.org/10.1186/s13634-016-0411-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2015rs005728", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050790039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-rsn.2013.0260", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056836351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/iet-spr.2015.0450", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056838696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/ip-rsn:20041056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056859006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jsen.2014.2359228", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061323523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jsen.2014.2360039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061323536"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jsen.2015.2431261", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061323979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jsen.2016.2579618", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061325036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lcomm.2014.2365206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061350908"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/maes.2006.1635166", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061381111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/msp.2008.4408448", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061423038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tac.2015.2465091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061479691"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tac.2016.2626398", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061480342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/taes.2007.4383601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061484972"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/taes.2012.6178073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061485778"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/taes.2013.6494422", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061486126"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/taes.2014.130723", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061486468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tie.2016.2535118", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061627839"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tie.2016.2610400", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061628347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsp.2005.862813", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061799890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsp.2011.2170170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061802955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsp.2011.2174989", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061803013"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsp.2013.2278154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061804006"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsp.2016.2603963", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061805830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsp.2016.2607147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061805847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4218/etrij.16.0114.1230", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072379514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/isccsp.2014.6877924", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093699634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icassp.2012.6288415", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093977198"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/chicc.2014.6896722", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094166426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/chinasip.2014.6889350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094294870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ssp.2014.6884671", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095021697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ssp.2012.6319819", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095235276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/radar.2016.7485077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095361888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/sam.2012.6250453", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095573005"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-10", 
    "datePublishedReg": "2018-10-01", 
    "description": "In this paper, a low probability of intercept (LPI) performance driven adaptive resource management algorithm for target tracking in a radar network is presented, where the radar network consists of a dedicated radar transmitter and multiple receivers. Firstly, the intercept probability for radar network systems is derived. Then, an adaptive resource management scheme based on LPI is proposed, in which a novel objective function for LPI performance is defined and minimized by optimizing the revisit interval, dwell time, and transmit power in radar networks to guarantee a specific target tracking accuracy with passive time difference of arrival and frequency difference of arrival cooperation. Numerical simulations demonstrate the superior performance of the proposed adaptive resource management scheme over other methods via Monte Carlo simulations.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11045-017-0494-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1046977", 
        "issn": [
          "0923-6082", 
          "1573-0824"
        ], 
        "name": "Multidimensional Systems and Signal Processing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "29"
      }
    ], 
    "name": "Adaptive resource management algorithm for target tracking in radar network based on low probability of intercept", 
    "pagination": "1203-1226", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0ba4a3f8b36cd8d4db1623ee825f9d41ff7e6f489f25febb1daf080d0fcb6ad3"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11045-017-0494-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1085409402"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11045-017-0494-8", 
      "https://app.dimensions.ai/details/publication/pub.1085409402"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000525.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11045-017-0494-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11045-017-0494-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11045-017-0494-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11045-017-0494-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11045-017-0494-8'


 

This table displays all metadata directly associated to this object as RDF triples.

194 TRIPLES      21 PREDICATES      66 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11045-017-0494-8 schema:about anzsrc-for:10
2 anzsrc-for:1005
3 schema:author N1dab160d31f043ada25820bfd56394aa
4 schema:citation sg:pub.10.1186/s13634-015-0293-z
5 sg:pub.10.1186/s13634-016-0411-6
6 https://doi.org/10.1002/2015rs005728
7 https://doi.org/10.1016/j.sigpro.2014.11.022
8 https://doi.org/10.1049/iet-rsn.2013.0260
9 https://doi.org/10.1049/iet-spr.2015.0450
10 https://doi.org/10.1049/ip-rsn:20041056
11 https://doi.org/10.1109/chicc.2014.6896722
12 https://doi.org/10.1109/chinasip.2014.6889350
13 https://doi.org/10.1109/icassp.2012.6288415
14 https://doi.org/10.1109/isccsp.2014.6877924
15 https://doi.org/10.1109/jsen.2014.2359228
16 https://doi.org/10.1109/jsen.2014.2360039
17 https://doi.org/10.1109/jsen.2015.2431261
18 https://doi.org/10.1109/jsen.2016.2579618
19 https://doi.org/10.1109/lcomm.2014.2365206
20 https://doi.org/10.1109/maes.2006.1635166
21 https://doi.org/10.1109/msp.2008.4408448
22 https://doi.org/10.1109/radar.2016.7485077
23 https://doi.org/10.1109/sam.2012.6250453
24 https://doi.org/10.1109/ssp.2012.6319819
25 https://doi.org/10.1109/ssp.2014.6884671
26 https://doi.org/10.1109/tac.2015.2465091
27 https://doi.org/10.1109/tac.2016.2626398
28 https://doi.org/10.1109/taes.2007.4383601
29 https://doi.org/10.1109/taes.2012.6178073
30 https://doi.org/10.1109/taes.2013.6494422
31 https://doi.org/10.1109/taes.2014.130723
32 https://doi.org/10.1109/tie.2016.2535118
33 https://doi.org/10.1109/tie.2016.2610400
34 https://doi.org/10.1109/tsp.2005.862813
35 https://doi.org/10.1109/tsp.2011.2170170
36 https://doi.org/10.1109/tsp.2011.2174989
37 https://doi.org/10.1109/tsp.2013.2278154
38 https://doi.org/10.1109/tsp.2016.2603963
39 https://doi.org/10.1109/tsp.2016.2607147
40 https://doi.org/10.1155/2014/654561
41 https://doi.org/10.3390/s16122072
42 https://doi.org/10.4218/etrij.16.0114.1230
43 schema:datePublished 2018-10
44 schema:datePublishedReg 2018-10-01
45 schema:description In this paper, a low probability of intercept (LPI) performance driven adaptive resource management algorithm for target tracking in a radar network is presented, where the radar network consists of a dedicated radar transmitter and multiple receivers. Firstly, the intercept probability for radar network systems is derived. Then, an adaptive resource management scheme based on LPI is proposed, in which a novel objective function for LPI performance is defined and minimized by optimizing the revisit interval, dwell time, and transmit power in radar networks to guarantee a specific target tracking accuracy with passive time difference of arrival and frequency difference of arrival cooperation. Numerical simulations demonstrate the superior performance of the proposed adaptive resource management scheme over other methods via Monte Carlo simulations.
46 schema:genre research_article
47 schema:inLanguage en
48 schema:isAccessibleForFree false
49 schema:isPartOf N47e1a52952134837927972a36c95402d
50 N72f00c0b50494e01a909aa04f01b31eb
51 sg:journal.1046977
52 schema:name Adaptive resource management algorithm for target tracking in radar network based on low probability of intercept
53 schema:pagination 1203-1226
54 schema:productId N1abe8e2b1c5d4c7181a94ebff8b185d5
55 N80fe30db093042b4810b96afa91895c2
56 Nbeff6fbc7bee48f29eb1aad103177578
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085409402
58 https://doi.org/10.1007/s11045-017-0494-8
59 schema:sdDatePublished 2019-04-10T22:35
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher N4d194cc4d395491d91c6e1065a6bcf81
62 schema:url http://link.springer.com/10.1007%2Fs11045-017-0494-8
63 sgo:license sg:explorer/license/
64 sgo:sdDataset articles
65 rdf:type schema:ScholarlyArticle
66 N066a80661dc0434990a510c96cda2f00 rdf:first sg:person.014533556771.16
67 rdf:rest N84a2d2ad13e24519adddd465c0e0e146
68 N1abe8e2b1c5d4c7181a94ebff8b185d5 schema:name doi
69 schema:value 10.1007/s11045-017-0494-8
70 rdf:type schema:PropertyValue
71 N1dab160d31f043ada25820bfd56394aa rdf:first sg:person.07414674316.03
72 rdf:rest N066a80661dc0434990a510c96cda2f00
73 N47e1a52952134837927972a36c95402d schema:volumeNumber 29
74 rdf:type schema:PublicationVolume
75 N4d194cc4d395491d91c6e1065a6bcf81 schema:name Springer Nature - SN SciGraph project
76 rdf:type schema:Organization
77 N72f00c0b50494e01a909aa04f01b31eb schema:issueNumber 4
78 rdf:type schema:PublicationIssue
79 N80fe30db093042b4810b96afa91895c2 schema:name readcube_id
80 schema:value 0ba4a3f8b36cd8d4db1623ee825f9d41ff7e6f489f25febb1daf080d0fcb6ad3
81 rdf:type schema:PropertyValue
82 N84a2d2ad13e24519adddd465c0e0e146 rdf:first sg:person.013736176371.59
83 rdf:rest rdf:nil
84 Nbeff6fbc7bee48f29eb1aad103177578 schema:name dimensions_id
85 schema:value pub.1085409402
86 rdf:type schema:PropertyValue
87 anzsrc-for:10 schema:inDefinedTermSet anzsrc-for:
88 schema:name Technology
89 rdf:type schema:DefinedTerm
90 anzsrc-for:1005 schema:inDefinedTermSet anzsrc-for:
91 schema:name Communications Technologies
92 rdf:type schema:DefinedTerm
93 sg:journal.1046977 schema:issn 0923-6082
94 1573-0824
95 schema:name Multidimensional Systems and Signal Processing
96 rdf:type schema:Periodical
97 sg:person.013736176371.59 schema:affiliation https://www.grid.ac/institutes/grid.64938.30
98 schema:familyName Wang
99 schema:givenName Fei
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013736176371.59
101 rdf:type schema:Person
102 sg:person.014533556771.16 schema:affiliation https://www.grid.ac/institutes/grid.64938.30
103 schema:familyName Zhou
104 schema:givenName Jianjiang
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014533556771.16
106 rdf:type schema:Person
107 sg:person.07414674316.03 schema:affiliation https://www.grid.ac/institutes/grid.64938.30
108 schema:familyName Shi
109 schema:givenName Chenguang
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07414674316.03
111 rdf:type schema:Person
112 sg:pub.10.1186/s13634-015-0293-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1025373752
113 https://doi.org/10.1186/s13634-015-0293-z
114 rdf:type schema:CreativeWork
115 sg:pub.10.1186/s13634-016-0411-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047295635
116 https://doi.org/10.1186/s13634-016-0411-6
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1002/2015rs005728 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050790039
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.sigpro.2014.11.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018514893
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1049/iet-rsn.2013.0260 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056836351
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1049/iet-spr.2015.0450 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056838696
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1049/ip-rsn:20041056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056859006
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1109/chicc.2014.6896722 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094166426
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1109/chinasip.2014.6889350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094294870
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1109/icassp.2012.6288415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093977198
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1109/isccsp.2014.6877924 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093699634
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1109/jsen.2014.2359228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061323523
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1109/jsen.2014.2360039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061323536
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1109/jsen.2015.2431261 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061323979
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1109/jsen.2016.2579618 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061325036
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1109/lcomm.2014.2365206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061350908
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1109/maes.2006.1635166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061381111
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1109/msp.2008.4408448 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061423038
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1109/radar.2016.7485077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095361888
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1109/sam.2012.6250453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095573005
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1109/ssp.2012.6319819 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095235276
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1109/ssp.2014.6884671 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095021697
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1109/tac.2015.2465091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061479691
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1109/tac.2016.2626398 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061480342
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1109/taes.2007.4383601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061484972
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1109/taes.2012.6178073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061485778
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1109/taes.2013.6494422 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061486126
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1109/taes.2014.130723 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061486468
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1109/tie.2016.2535118 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061627839
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1109/tie.2016.2610400 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061628347
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1109/tsp.2005.862813 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061799890
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1109/tsp.2011.2170170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061802955
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1109/tsp.2011.2174989 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061803013
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1109/tsp.2013.2278154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061804006
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1109/tsp.2016.2603963 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061805830
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1109/tsp.2016.2607147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061805847
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1155/2014/654561 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006687727
187 rdf:type schema:CreativeWork
188 https://doi.org/10.3390/s16122072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009668151
189 rdf:type schema:CreativeWork
190 https://doi.org/10.4218/etrij.16.0114.1230 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072379514
191 rdf:type schema:CreativeWork
192 https://www.grid.ac/institutes/grid.64938.30 schema:alternateName Nanjing University of Aeronautics and Astronautics
193 schema:name Key Laboratory of Radar Imaging and Microwave Photonics, Ministry of Education, Nanjing University of Aeronautics and Astronautics, 210016, Nanjing, China
194 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...