Comparison of two laryngeal tissue fiber constitutive models View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-02

AUTHORS

Eric J. Hunter, Anil Kumar Reddy Palaparthi, Thomas Siegmund, Roger W. Chan

ABSTRACT

Biological tissues are complex time-dependent materials, and the best choice of the appropriate time-dependent constitutive description is not evident. This report reviews two constitutive models (a modified Kelvin model and a two-network Ogden–Boyce model) in the characterization of the passive stress–strain properties of laryngeal tissue under tensile deformation. The two models are compared, as are the automated methods for parameterization of tissue stress–strain data (a brute force vs. a common optimization method). Sensitivity (error curves) of parameters from both models and the optimized parameter set are calculated and contrast by optimizing to the same tissue stress–strain data. Both models adequately characterized empirical stress–strain datasets and could be used to recreate a good likeness of the data. Nevertheless, parameters in both models were sensitive to measurement errors or uncertainties in stress–strain, which would greatly hinder the confidence in those parameters. The modified Kelvin model emerges as a potential better choice for phonation models which use a tissue model as one component, or for general comparisons of the mechanical properties of one type of tissue to another (e.g., axial stress nonlinearity). In contrast, the Ogden–Boyce model would be more appropriate to provide a basic understanding of the tissue’s mechanical response with better insights into the tissue’s physical characteristics in terms of standard engineering metrics such as shear modulus and viscosity. More... »

PAGES

179-196

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11043-013-9221-5

DOI

http://dx.doi.org/10.1007/s11043-013-9221-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1005973298


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0903", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biomedical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Utah", 
          "id": "https://www.grid.ac/institutes/grid.223827.e", 
          "name": [
            "National Center for Voice and Speech, The University of Utah, 136 S. Main St., Suite 320, 84101-1680, Salt Lake City, UT, USA", 
            "Department of Bioengineering, The University of Utah, Salt Lake City, UT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hunter", 
        "givenName": "Eric J.", 
        "id": "sg:person.01361754512.97", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361754512.97"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Utah", 
          "id": "https://www.grid.ac/institutes/grid.223827.e", 
          "name": [
            "National Center for Voice and Speech, The University of Utah, 136 S. Main St., Suite 320, 84101-1680, Salt Lake City, UT, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Palaparthi", 
        "givenName": "Anil Kumar Reddy", 
        "id": "sg:person.01227040242.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227040242.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Purdue University", 
          "id": "https://www.grid.ac/institutes/grid.169077.e", 
          "name": [
            "School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Siegmund", 
        "givenName": "Thomas", 
        "id": "sg:person.01157554112.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01157554112.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas Southwestern Medical Center", 
          "id": "https://www.grid.ac/institutes/grid.267313.2", 
          "name": [
            "Otolaryngology\u2014Head and Neck Surgery, and Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chan", 
        "givenName": "Roger W.", 
        "id": "sg:person.01162031610.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162031610.15"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1288/00005537-199407000-00019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000015579"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/000348949510400711", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009247805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/000348949510400711", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009247805"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0892-1997(03)00027-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012377197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/000348940511401012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013516232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/000348940511401012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013516232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3109/14015430902913501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025354626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10439-007-9314-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028332341", 
          "https://doi.org/10.1007/s10439-007-9314-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10439-007-9314-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028332341", 
          "https://doi.org/10.1007/s10439-007-9314-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/japplphysiol.00892.2006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029976415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmbbm.2008.05.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030967912"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jvoice.2006.06.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031672564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00422-008-0257-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033442044", 
          "https://doi.org/10.1007/s00422-008-0257-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jbiomech.2003.11.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040796393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0892-1997(88)80004-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041301020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0892-1997(88)80004-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041301020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1044/1092-4388(2006/035)", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052032560"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/14015430510006659", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053709845"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1121/1.1652033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062269598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1121/1.1899723", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062271151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1121/1.2159433", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062311179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1121/1.2697573", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062313655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1078032426", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083105359", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-02", 
    "datePublishedReg": "2014-02-01", 
    "description": "Biological tissues are complex time-dependent materials, and the best choice of the appropriate time-dependent constitutive description is not evident. This report reviews two constitutive models (a modified Kelvin model and a two-network Ogden\u2013Boyce model) in the characterization of the passive stress\u2013strain properties of laryngeal tissue under tensile deformation. The two models are compared, as are the automated methods for parameterization of tissue stress\u2013strain data (a brute force vs. a common optimization method). Sensitivity (error curves) of parameters from both models and the optimized parameter set are calculated and contrast by optimizing to the same tissue stress\u2013strain data. Both models adequately characterized empirical stress\u2013strain datasets and could be used to recreate a good likeness of the data. Nevertheless, parameters in both models were sensitive to measurement errors or uncertainties in stress\u2013strain, which would greatly hinder the confidence in those parameters. The modified Kelvin model emerges as a potential better choice for phonation models which use a tissue model as one component, or for general comparisons of the mechanical properties of one type of tissue to another (e.g., axial stress nonlinearity). In contrast, the Ogden\u2013Boyce model would be more appropriate to provide a basic understanding of the tissue\u2019s mechanical response with better insights into the tissue\u2019s physical characteristics in terms of standard engineering metrics such as shear modulus and viscosity.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11043-013-9221-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.2489048", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.2488727", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136212", 
        "issn": [
          "1385-2000", 
          "1573-2738"
        ], 
        "name": "Mechanics of Time-Dependent Materials", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "18"
      }
    ], 
    "name": "Comparison of two laryngeal tissue fiber constitutive models", 
    "pagination": "179-196", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1c7408095462a85676525619833b687e6db260c805c5a28a31a380195a3023f7"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11043-013-9221-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1005973298"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11043-013-9221-5", 
      "https://app.dimensions.ai/details/publication/pub.1005973298"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:41", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000510.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11043-013-9221-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11043-013-9221-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11043-013-9221-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11043-013-9221-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11043-013-9221-5'


 

This table displays all metadata directly associated to this object as RDF triples.

153 TRIPLES      21 PREDICATES      47 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11043-013-9221-5 schema:about anzsrc-for:09
2 anzsrc-for:0903
3 schema:author N4da605aef79a49bda6e8f7269bc7cad7
4 schema:citation sg:pub.10.1007/s00422-008-0257-6
5 sg:pub.10.1007/s10439-007-9314-x
6 https://app.dimensions.ai/details/publication/pub.1078032426
7 https://app.dimensions.ai/details/publication/pub.1083105359
8 https://doi.org/10.1016/j.jbiomech.2003.11.007
9 https://doi.org/10.1016/j.jmbbm.2008.05.005
10 https://doi.org/10.1016/j.jvoice.2006.06.004
11 https://doi.org/10.1016/s0892-1997(03)00027-4
12 https://doi.org/10.1016/s0892-1997(88)80004-3
13 https://doi.org/10.1044/1092-4388(2006/035)
14 https://doi.org/10.1080/14015430510006659
15 https://doi.org/10.1121/1.1652033
16 https://doi.org/10.1121/1.1899723
17 https://doi.org/10.1121/1.2159433
18 https://doi.org/10.1121/1.2697573
19 https://doi.org/10.1152/japplphysiol.00892.2006
20 https://doi.org/10.1177/000348940511401012
21 https://doi.org/10.1177/000348949510400711
22 https://doi.org/10.1288/00005537-199407000-00019
23 https://doi.org/10.3109/14015430902913501
24 schema:datePublished 2014-02
25 schema:datePublishedReg 2014-02-01
26 schema:description Biological tissues are complex time-dependent materials, and the best choice of the appropriate time-dependent constitutive description is not evident. This report reviews two constitutive models (a modified Kelvin model and a two-network Ogden–Boyce model) in the characterization of the passive stress–strain properties of laryngeal tissue under tensile deformation. The two models are compared, as are the automated methods for parameterization of tissue stress–strain data (a brute force vs. a common optimization method). Sensitivity (error curves) of parameters from both models and the optimized parameter set are calculated and contrast by optimizing to the same tissue stress–strain data. Both models adequately characterized empirical stress–strain datasets and could be used to recreate a good likeness of the data. Nevertheless, parameters in both models were sensitive to measurement errors or uncertainties in stress–strain, which would greatly hinder the confidence in those parameters. The modified Kelvin model emerges as a potential better choice for phonation models which use a tissue model as one component, or for general comparisons of the mechanical properties of one type of tissue to another (e.g., axial stress nonlinearity). In contrast, the Ogden–Boyce model would be more appropriate to provide a basic understanding of the tissue’s mechanical response with better insights into the tissue’s physical characteristics in terms of standard engineering metrics such as shear modulus and viscosity.
27 schema:genre research_article
28 schema:inLanguage en
29 schema:isAccessibleForFree false
30 schema:isPartOf N49c0de4801c54560878f5dd7a7e1790e
31 Naff708434c59463191365b855081bb39
32 sg:journal.1136212
33 schema:name Comparison of two laryngeal tissue fiber constitutive models
34 schema:pagination 179-196
35 schema:productId N1fbaeee616a447bab13a53faa11a8dfd
36 N8b8386a0cd1e4a3095e0d86d1268d947
37 Na472848c9a50415dbda0963d1524c1dd
38 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005973298
39 https://doi.org/10.1007/s11043-013-9221-5
40 schema:sdDatePublished 2019-04-10T16:41
41 schema:sdLicense https://scigraph.springernature.com/explorer/license/
42 schema:sdPublisher N50e2e7becb574ceb855604863cc44ca9
43 schema:url http://link.springer.com/10.1007%2Fs11043-013-9221-5
44 sgo:license sg:explorer/license/
45 sgo:sdDataset articles
46 rdf:type schema:ScholarlyArticle
47 N1fbaeee616a447bab13a53faa11a8dfd schema:name readcube_id
48 schema:value 1c7408095462a85676525619833b687e6db260c805c5a28a31a380195a3023f7
49 rdf:type schema:PropertyValue
50 N2e762fd3b06f4ad188a3540070c12898 rdf:first sg:person.01227040242.53
51 rdf:rest Ndf3efc8975f14126b7d56956aae87fce
52 N3e9f6ee8f7784429be4746903575f407 rdf:first sg:person.01162031610.15
53 rdf:rest rdf:nil
54 N49c0de4801c54560878f5dd7a7e1790e schema:volumeNumber 18
55 rdf:type schema:PublicationVolume
56 N4da605aef79a49bda6e8f7269bc7cad7 rdf:first sg:person.01361754512.97
57 rdf:rest N2e762fd3b06f4ad188a3540070c12898
58 N50e2e7becb574ceb855604863cc44ca9 schema:name Springer Nature - SN SciGraph project
59 rdf:type schema:Organization
60 N8b8386a0cd1e4a3095e0d86d1268d947 schema:name dimensions_id
61 schema:value pub.1005973298
62 rdf:type schema:PropertyValue
63 Na472848c9a50415dbda0963d1524c1dd schema:name doi
64 schema:value 10.1007/s11043-013-9221-5
65 rdf:type schema:PropertyValue
66 Naff708434c59463191365b855081bb39 schema:issueNumber 1
67 rdf:type schema:PublicationIssue
68 Ndf3efc8975f14126b7d56956aae87fce rdf:first sg:person.01157554112.52
69 rdf:rest N3e9f6ee8f7784429be4746903575f407
70 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
71 schema:name Engineering
72 rdf:type schema:DefinedTerm
73 anzsrc-for:0903 schema:inDefinedTermSet anzsrc-for:
74 schema:name Biomedical Engineering
75 rdf:type schema:DefinedTerm
76 sg:grant.2488727 http://pending.schema.org/fundedItem sg:pub.10.1007/s11043-013-9221-5
77 rdf:type schema:MonetaryGrant
78 sg:grant.2489048 http://pending.schema.org/fundedItem sg:pub.10.1007/s11043-013-9221-5
79 rdf:type schema:MonetaryGrant
80 sg:journal.1136212 schema:issn 1385-2000
81 1573-2738
82 schema:name Mechanics of Time-Dependent Materials
83 rdf:type schema:Periodical
84 sg:person.01157554112.52 schema:affiliation https://www.grid.ac/institutes/grid.169077.e
85 schema:familyName Siegmund
86 schema:givenName Thomas
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01157554112.52
88 rdf:type schema:Person
89 sg:person.01162031610.15 schema:affiliation https://www.grid.ac/institutes/grid.267313.2
90 schema:familyName Chan
91 schema:givenName Roger W.
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01162031610.15
93 rdf:type schema:Person
94 sg:person.01227040242.53 schema:affiliation https://www.grid.ac/institutes/grid.223827.e
95 schema:familyName Palaparthi
96 schema:givenName Anil Kumar Reddy
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01227040242.53
98 rdf:type schema:Person
99 sg:person.01361754512.97 schema:affiliation https://www.grid.ac/institutes/grid.223827.e
100 schema:familyName Hunter
101 schema:givenName Eric J.
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01361754512.97
103 rdf:type schema:Person
104 sg:pub.10.1007/s00422-008-0257-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033442044
105 https://doi.org/10.1007/s00422-008-0257-6
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/s10439-007-9314-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1028332341
108 https://doi.org/10.1007/s10439-007-9314-x
109 rdf:type schema:CreativeWork
110 https://app.dimensions.ai/details/publication/pub.1078032426 schema:CreativeWork
111 https://app.dimensions.ai/details/publication/pub.1083105359 schema:CreativeWork
112 https://doi.org/10.1016/j.jbiomech.2003.11.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040796393
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.jmbbm.2008.05.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030967912
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.jvoice.2006.06.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031672564
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/s0892-1997(03)00027-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012377197
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/s0892-1997(88)80004-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041301020
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1044/1092-4388(2006/035) schema:sameAs https://app.dimensions.ai/details/publication/pub.1052032560
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1080/14015430510006659 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053709845
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1121/1.1652033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062269598
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1121/1.1899723 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062271151
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1121/1.2159433 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062311179
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1121/1.2697573 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062313655
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1152/japplphysiol.00892.2006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029976415
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1177/000348940511401012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013516232
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1177/000348949510400711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009247805
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1288/00005537-199407000-00019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000015579
141 rdf:type schema:CreativeWork
142 https://doi.org/10.3109/14015430902913501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025354626
143 rdf:type schema:CreativeWork
144 https://www.grid.ac/institutes/grid.169077.e schema:alternateName Purdue University
145 schema:name School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
146 rdf:type schema:Organization
147 https://www.grid.ac/institutes/grid.223827.e schema:alternateName University of Utah
148 schema:name Department of Bioengineering, The University of Utah, Salt Lake City, UT, USA
149 National Center for Voice and Speech, The University of Utah, 136 S. Main St., Suite 320, 84101-1680, Salt Lake City, UT, USA
150 rdf:type schema:Organization
151 https://www.grid.ac/institutes/grid.267313.2 schema:alternateName The University of Texas Southwestern Medical Center
152 schema:name Otolaryngology—Head and Neck Surgery, and Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, TX, USA
153 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...