Meaningful secret image sharing resist to typical image processing of shadows View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-03-02

AUTHORS

Yue Jiang, Xuehu Yan, Jianqing Qi, Longlong Li, Yiming Liu

ABSTRACT

Since the recovery of SIS is based on mathematical operations (such as Lagrange interpolation, XOR, etc), when transmitted over the internet, images are usually filtered, sampled and so on, which makes the existing secret image sharing (SIS) schemes inapplicable. In this paper, we propose a model of meaningful SIS scheme resist to typical image processing of shadows. First, the shadows are generated by extended polynomial-based SIS. Then, through pixel expansion, pixel assignment and fine adjustment, the intermediate shadows are obtained, where the intermediate shadows are consistent with the original shadows after image processing and extraction. We derive three specific algorithms for (k,n) threshold lossless meaningful SIS resist to three kinds of image processing from the model respectively. Further, the analysis of shadows quality is given. Three groups of experiments show the feasibility of the proposed method, and the general model is especially effective against down-sampling and filtering. Besides, the scheme obtains better attributes, such as lossless recovery, (k,n) threshold and meaningful shares. More... »

PAGES

16097-16115

References to SciGraph publications

  • 2016-10-07. Separable data hiding in encrypted image based on compressive sensing and discrete fourier transform in MULTIMEDIA TOOLS AND APPLICATIONS
  • 2013. Unconditionally-Secure Robust Secret Sharing with Minimum Share Size in FINANCIAL CRYPTOGRAPHY AND DATA SECURITY
  • 2015-10-27. An enhanced threshold visual secret sharing based on random grids in JOURNAL OF REAL-TIME IMAGE PROCESSING
  • 2008-01-01. Detection of Algebraic Manipulation with Applications to Robust Secret Sharing and Fuzzy Extractors in ADVANCES IN CRYPTOLOGY – EUROCRYPT 2008
  • 2018-11-01. Nearly optimal robust secret sharing in DESIGNS, CODES AND CRYPTOGRAPHY
  • 2016-09-26. Participants increasing for threshold random grids-based visual secret sharing in JOURNAL OF REAL-TIME IMAGE PROCESSING
  • 2015-04-14. Linear Secret Sharing Schemes from Error Correcting Codes and Universal Hash Functions in ADVANCES IN CRYPTOLOGY - EUROCRYPT 2015
  • 2015-06-10. A cheating-prevention mechanism for hierarchical secret-image-sharing using robust watermarking in MULTIMEDIA TOOLS AND APPLICATIONS
  • 2017-09-21. A novel lossless recovery algorithm for basic matrix-based VSS in MULTIMEDIA TOOLS AND APPLICATIONS
  • 2012. Unconditionally-Secure Robust Secret Sharing with Compact Shares in ADVANCES IN CRYPTOLOGY – EUROCRYPT 2012
  • 2016-07-21. A novel two-in-one image secret sharing scheme based on perfect black visual cryptography in JOURNAL OF REAL-TIME IMAGE PROCESSING
  • 2016-10-04. Perfect contrast XOR-based visual cryptography schemes via linear algebra in DESIGNS, CODES AND CRYPTOGRAPHY
  • 2017-06-09. A novel secret image sharing scheme using large primes in MULTIMEDIA TOOLS AND APPLICATIONS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11042-022-12207-5

    DOI

    http://dx.doi.org/10.1007/s11042-022-12207-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1145982165


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Anhui Province Key Laboratory of Cyberspace Security Situation Awareness and Evaluation, 230037, Hefei, China", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "National University of Defense Technology, 230037, Hefei, China", 
                "Anhui Province Key Laboratory of Cyberspace Security Situation Awareness and Evaluation, 230037, Hefei, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jiang", 
            "givenName": "Yue", 
            "id": "sg:person.014770263053.73", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014770263053.73"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Anhui Province Key Laboratory of Cyberspace Security Situation Awareness and Evaluation, 230037, Hefei, China", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "National University of Defense Technology, 230037, Hefei, China", 
                "Anhui Province Key Laboratory of Cyberspace Security Situation Awareness and Evaluation, 230037, Hefei, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yan", 
            "givenName": "Xuehu", 
            "id": "sg:person.010467364517.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010467364517.31"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Anhui Province Key Laboratory of Cyberspace Security Situation Awareness and Evaluation, 230037, Hefei, China", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "National University of Defense Technology, 230037, Hefei, China", 
                "Anhui Province Key Laboratory of Cyberspace Security Situation Awareness and Evaluation, 230037, Hefei, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Qi", 
            "givenName": "Jianqing", 
            "id": "sg:person.016152714261.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016152714261.13"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Anhui Province Key Laboratory of Cyberspace Security Situation Awareness and Evaluation, 230037, Hefei, China", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "National University of Defense Technology, 230037, Hefei, China", 
                "Anhui Province Key Laboratory of Cyberspace Security Situation Awareness and Evaluation, 230037, Hefei, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Longlong", 
            "id": "sg:person.014776417601.86", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014776417601.86"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Jilin University, 130012, Changchun, China", 
              "id": "http://www.grid.ac/institutes/grid.64924.3d", 
              "name": [
                "Jilin University, 130012, Changchun, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Yiming", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11042-015-2701-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050194257", 
              "https://doi.org/10.1007/s11042-015-2701-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-46803-6_11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003912840", 
              "https://doi.org/10.1007/978-3-662-46803-6_11"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-39884-1_9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049992244", 
              "https://doi.org/10.1007/978-3-642-39884-1_9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11554-015-0540-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022432477", 
              "https://doi.org/10.1007/s11554-015-0540-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11042-017-5215-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091893616", 
              "https://doi.org/10.1007/s11042-017-5215-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11554-016-0639-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004466947", 
              "https://doi.org/10.1007/s11554-016-0639-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11042-017-4841-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085937212", 
              "https://doi.org/10.1007/s11042-017-4841-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-78967-3_27", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037449861", 
              "https://doi.org/10.1007/978-3-540-78967-3_27"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10623-016-0285-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030004022", 
              "https://doi.org/10.1007/s10623-016-0285-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-29011-4_13", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041750415", 
              "https://doi.org/10.1007/978-3-642-29011-4_13"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11042-016-3971-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040634282", 
              "https://doi.org/10.1007/s11042-016-3971-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11554-016-0621-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009229081", 
              "https://doi.org/10.1007/s11554-016-0621-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10623-018-0578-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107967370", 
              "https://doi.org/10.1007/s10623-018-0578-y"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-03-02", 
        "datePublishedReg": "2022-03-02", 
        "description": "Since the recovery of SIS is based on mathematical operations (such as Lagrange interpolation, XOR, etc), when transmitted over the internet, images are usually filtered, sampled and so on, which makes the existing secret image sharing (SIS) schemes inapplicable. In this paper, we propose a model of meaningful SIS scheme resist to typical image processing of shadows. First, the shadows are generated by extended polynomial-based SIS. Then, through pixel expansion, pixel assignment and fine adjustment, the intermediate shadows are obtained, where the intermediate shadows are consistent with the original shadows after image processing and extraction. We derive three specific algorithms for (k,n) threshold lossless meaningful SIS resist to three kinds of image processing from the model respectively. Further, the analysis of shadows quality is given. Three groups of experiments show the feasibility of the proposed method, and the general model is especially effective against down-sampling and filtering. Besides, the scheme obtains better attributes, such as lossless recovery, (k,n) threshold and meaningful shares.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11042-022-12207-5", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1044869", 
            "issn": [
              "1380-7501", 
              "1573-7721"
            ], 
            "name": "Multimedia Tools and Applications", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "11", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "81"
          }
        ], 
        "keywords": [
          "typical image processing", 
          "image processing", 
          "secret image sharing scheme", 
          "image sharing scheme", 
          "meaningful shares", 
          "pixel expansion", 
          "SIS schemes", 
          "lossless recovery", 
          "sharing scheme", 
          "specific algorithms", 
          "pixel assignment", 
          "mathematical operations", 
          "best attributes", 
          "groups of experiments", 
          "shadow quality", 
          "scheme", 
          "processing", 
          "general model", 
          "Internet", 
          "resist", 
          "fine adjustment", 
          "algorithm", 
          "shadow", 
          "filtering", 
          "images", 
          "model", 
          "attributes", 
          "SIS", 
          "extraction", 
          "operation", 
          "feasibility", 
          "assignment", 
          "kind", 
          "recovery", 
          "quality", 
          "experiments", 
          "method", 
          "expansion", 
          "share", 
          "threshold", 
          "analysis", 
          "adjustment", 
          "group", 
          "paper"
        ], 
        "name": "Meaningful secret image sharing resist to typical image processing of shadows", 
        "pagination": "16097-16115", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1145982165"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11042-022-12207-5"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11042-022-12207-5", 
          "https://app.dimensions.ai/details/publication/pub.1145982165"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:44", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_921.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11042-022-12207-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11042-022-12207-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11042-022-12207-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11042-022-12207-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11042-022-12207-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    184 TRIPLES      21 PREDICATES      81 URIs      60 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11042-022-12207-5 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N90f88da0c7ac48a096cc702e81142124
    4 schema:citation sg:pub.10.1007/978-3-540-78967-3_27
    5 sg:pub.10.1007/978-3-642-29011-4_13
    6 sg:pub.10.1007/978-3-642-39884-1_9
    7 sg:pub.10.1007/978-3-662-46803-6_11
    8 sg:pub.10.1007/s10623-016-0285-5
    9 sg:pub.10.1007/s10623-018-0578-y
    10 sg:pub.10.1007/s11042-015-2701-7
    11 sg:pub.10.1007/s11042-016-3971-4
    12 sg:pub.10.1007/s11042-017-4841-4
    13 sg:pub.10.1007/s11042-017-5215-7
    14 sg:pub.10.1007/s11554-015-0540-4
    15 sg:pub.10.1007/s11554-016-0621-z
    16 sg:pub.10.1007/s11554-016-0639-2
    17 schema:datePublished 2022-03-02
    18 schema:datePublishedReg 2022-03-02
    19 schema:description Since the recovery of SIS is based on mathematical operations (such as Lagrange interpolation, XOR, etc), when transmitted over the internet, images are usually filtered, sampled and so on, which makes the existing secret image sharing (SIS) schemes inapplicable. In this paper, we propose a model of meaningful SIS scheme resist to typical image processing of shadows. First, the shadows are generated by extended polynomial-based SIS. Then, through pixel expansion, pixel assignment and fine adjustment, the intermediate shadows are obtained, where the intermediate shadows are consistent with the original shadows after image processing and extraction. We derive three specific algorithms for (k,n) threshold lossless meaningful SIS resist to three kinds of image processing from the model respectively. Further, the analysis of shadows quality is given. Three groups of experiments show the feasibility of the proposed method, and the general model is especially effective against down-sampling and filtering. Besides, the scheme obtains better attributes, such as lossless recovery, (k,n) threshold and meaningful shares.
    20 schema:genre article
    21 schema:isAccessibleForFree false
    22 schema:isPartOf N04f09b0a50594c74b8bca1cf47d5c895
    23 N8b886ff6257e42ae9328ddf14e3349c9
    24 sg:journal.1044869
    25 schema:keywords Internet
    26 SIS
    27 SIS schemes
    28 adjustment
    29 algorithm
    30 analysis
    31 assignment
    32 attributes
    33 best attributes
    34 expansion
    35 experiments
    36 extraction
    37 feasibility
    38 filtering
    39 fine adjustment
    40 general model
    41 group
    42 groups of experiments
    43 image processing
    44 image sharing scheme
    45 images
    46 kind
    47 lossless recovery
    48 mathematical operations
    49 meaningful shares
    50 method
    51 model
    52 operation
    53 paper
    54 pixel assignment
    55 pixel expansion
    56 processing
    57 quality
    58 recovery
    59 resist
    60 scheme
    61 secret image sharing scheme
    62 shadow
    63 shadow quality
    64 share
    65 sharing scheme
    66 specific algorithms
    67 threshold
    68 typical image processing
    69 schema:name Meaningful secret image sharing resist to typical image processing of shadows
    70 schema:pagination 16097-16115
    71 schema:productId Nb1156d85dfc64cc9a1f488cb5bab58af
    72 Nded47a23b8e54602ae0d7b4164484a41
    73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1145982165
    74 https://doi.org/10.1007/s11042-022-12207-5
    75 schema:sdDatePublished 2022-12-01T06:44
    76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    77 schema:sdPublisher Nb77e8f78d839455698f0fffb757e26c0
    78 schema:url https://doi.org/10.1007/s11042-022-12207-5
    79 sgo:license sg:explorer/license/
    80 sgo:sdDataset articles
    81 rdf:type schema:ScholarlyArticle
    82 N04f09b0a50594c74b8bca1cf47d5c895 schema:issueNumber 11
    83 rdf:type schema:PublicationIssue
    84 N0d9a6dfb5f9b4d739f09b8e346a6c0ca rdf:first sg:person.016152714261.13
    85 rdf:rest N7df04abd95594d05bb2e3b292841a0ad
    86 N537d7abf4b9644f4957a02ef2217e10a rdf:first Nbc9d9de7f05c4e38a4c1456a4c1b0d64
    87 rdf:rest rdf:nil
    88 N7df04abd95594d05bb2e3b292841a0ad rdf:first sg:person.014776417601.86
    89 rdf:rest N537d7abf4b9644f4957a02ef2217e10a
    90 N8b886ff6257e42ae9328ddf14e3349c9 schema:volumeNumber 81
    91 rdf:type schema:PublicationVolume
    92 N90f88da0c7ac48a096cc702e81142124 rdf:first sg:person.014770263053.73
    93 rdf:rest Nb2549c8c820a4c1684da4f01a75a3e68
    94 Nb1156d85dfc64cc9a1f488cb5bab58af schema:name doi
    95 schema:value 10.1007/s11042-022-12207-5
    96 rdf:type schema:PropertyValue
    97 Nb2549c8c820a4c1684da4f01a75a3e68 rdf:first sg:person.010467364517.31
    98 rdf:rest N0d9a6dfb5f9b4d739f09b8e346a6c0ca
    99 Nb77e8f78d839455698f0fffb757e26c0 schema:name Springer Nature - SN SciGraph project
    100 rdf:type schema:Organization
    101 Nbc9d9de7f05c4e38a4c1456a4c1b0d64 schema:affiliation grid-institutes:grid.64924.3d
    102 schema:familyName Liu
    103 schema:givenName Yiming
    104 rdf:type schema:Person
    105 Nded47a23b8e54602ae0d7b4164484a41 schema:name dimensions_id
    106 schema:value pub.1145982165
    107 rdf:type schema:PropertyValue
    108 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    109 schema:name Information and Computing Sciences
    110 rdf:type schema:DefinedTerm
    111 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    112 schema:name Artificial Intelligence and Image Processing
    113 rdf:type schema:DefinedTerm
    114 sg:journal.1044869 schema:issn 1380-7501
    115 1573-7721
    116 schema:name Multimedia Tools and Applications
    117 schema:publisher Springer Nature
    118 rdf:type schema:Periodical
    119 sg:person.010467364517.31 schema:affiliation grid-institutes:None
    120 schema:familyName Yan
    121 schema:givenName Xuehu
    122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010467364517.31
    123 rdf:type schema:Person
    124 sg:person.014770263053.73 schema:affiliation grid-institutes:None
    125 schema:familyName Jiang
    126 schema:givenName Yue
    127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014770263053.73
    128 rdf:type schema:Person
    129 sg:person.014776417601.86 schema:affiliation grid-institutes:None
    130 schema:familyName Li
    131 schema:givenName Longlong
    132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014776417601.86
    133 rdf:type schema:Person
    134 sg:person.016152714261.13 schema:affiliation grid-institutes:None
    135 schema:familyName Qi
    136 schema:givenName Jianqing
    137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016152714261.13
    138 rdf:type schema:Person
    139 sg:pub.10.1007/978-3-540-78967-3_27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037449861
    140 https://doi.org/10.1007/978-3-540-78967-3_27
    141 rdf:type schema:CreativeWork
    142 sg:pub.10.1007/978-3-642-29011-4_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041750415
    143 https://doi.org/10.1007/978-3-642-29011-4_13
    144 rdf:type schema:CreativeWork
    145 sg:pub.10.1007/978-3-642-39884-1_9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049992244
    146 https://doi.org/10.1007/978-3-642-39884-1_9
    147 rdf:type schema:CreativeWork
    148 sg:pub.10.1007/978-3-662-46803-6_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003912840
    149 https://doi.org/10.1007/978-3-662-46803-6_11
    150 rdf:type schema:CreativeWork
    151 sg:pub.10.1007/s10623-016-0285-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030004022
    152 https://doi.org/10.1007/s10623-016-0285-5
    153 rdf:type schema:CreativeWork
    154 sg:pub.10.1007/s10623-018-0578-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1107967370
    155 https://doi.org/10.1007/s10623-018-0578-y
    156 rdf:type schema:CreativeWork
    157 sg:pub.10.1007/s11042-015-2701-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050194257
    158 https://doi.org/10.1007/s11042-015-2701-7
    159 rdf:type schema:CreativeWork
    160 sg:pub.10.1007/s11042-016-3971-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040634282
    161 https://doi.org/10.1007/s11042-016-3971-4
    162 rdf:type schema:CreativeWork
    163 sg:pub.10.1007/s11042-017-4841-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085937212
    164 https://doi.org/10.1007/s11042-017-4841-4
    165 rdf:type schema:CreativeWork
    166 sg:pub.10.1007/s11042-017-5215-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091893616
    167 https://doi.org/10.1007/s11042-017-5215-7
    168 rdf:type schema:CreativeWork
    169 sg:pub.10.1007/s11554-015-0540-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022432477
    170 https://doi.org/10.1007/s11554-015-0540-4
    171 rdf:type schema:CreativeWork
    172 sg:pub.10.1007/s11554-016-0621-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1009229081
    173 https://doi.org/10.1007/s11554-016-0621-z
    174 rdf:type schema:CreativeWork
    175 sg:pub.10.1007/s11554-016-0639-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004466947
    176 https://doi.org/10.1007/s11554-016-0639-2
    177 rdf:type schema:CreativeWork
    178 grid-institutes:None schema:alternateName Anhui Province Key Laboratory of Cyberspace Security Situation Awareness and Evaluation, 230037, Hefei, China
    179 schema:name Anhui Province Key Laboratory of Cyberspace Security Situation Awareness and Evaluation, 230037, Hefei, China
    180 National University of Defense Technology, 230037, Hefei, China
    181 rdf:type schema:Organization
    182 grid-institutes:grid.64924.3d schema:alternateName Jilin University, 130012, Changchun, China
    183 schema:name Jilin University, 130012, Changchun, China
    184 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...