Weighted visual cryptographic scheme with improved image quality View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2020-05-06

AUTHORS

Xuehu Yan, Feng Liu, Wei Qi Yan, Guozheng Yang, Yuliang Lu

ABSTRACT

The weighted visual cryptographic scheme (WVCS) allows the dealer to assign a weight to every shadow (participant) according to the participant’s importance so that the ability of each shadow to reveal a secret image can be varied. However, the previous weighted random grid-based VCS (WRGVCS) has the shortcoming of low visual quality. The contribution of this paper is that a new WRGVCS for a (k, n) threshold is designed to improve the image quality of the revealed secret image and to realize more features. RG is utilized to achieve the features of no pixel expansion and no codebook design. The probability of covering the valid bits is improved to improve the image quality. Experimental results and security analyses indicate the effectiveness of the designed scheme. Contrast and feature comparisons with previous weighted VCS approaches exhibit improvements in the designed scheme over other relative weighted VCSs. The limitations of our work are that the weighted effect decreases for some thresholds, and the theoretical contrast of the designed scheme is not derived directly by the parameters. More... »

PAGES

21345-21360

References to SciGraph publications

  • 1995. Visual cryptography in ADVANCES IN CRYPTOLOGY — EUROCRYPT'94
  • 2018-02-09. Cheating Immune Visual Cryptographic Scheme with Reduced Pixel Expansion in PROGRESS IN ADVANCED COMPUTING AND INTELLIGENT ENGINEERING
  • 2015-10-27. An enhanced threshold visual secret sharing based on random grids in JOURNAL OF REAL-TIME IMAGE PROCESSING
  • 2017-12-15. A new two-level QR code with visual cryptography scheme in MULTIMEDIA TOOLS AND APPLICATIONS
  • 2019-03-22. A stegano - visual cryptography technique for multimedia security in MULTIMEDIA TOOLS AND APPLICATIONS
  • 2018-10-23. An efficient XOR-based verifiable visual cryptographic scheme in MULTIMEDIA TOOLS AND APPLICATIONS
  • 2016-07-31. Clarity Corresponding to Contrast in Visual Cryptography in SOCIAL COMPUTING
  • 2017-09-21. A novel lossless recovery algorithm for basic matrix-based VSS in MULTIMEDIA TOOLS AND APPLICATIONS
  • 2017-12-16. Random grid-based threshold visual secret sharing with improved visual quality and lossless recovery ability in MULTIMEDIA TOOLS AND APPLICATIONS
  • 2017-02-09. Progressive visual secret sharing for general access structure with multiple decryptions in MULTIMEDIA TOOLS AND APPLICATIONS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11042-020-08970-y

    DOI

    http://dx.doi.org/10.1007/s11042-020-08970-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1127413512


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "National University of Defense Technology, 230037, Hefei, China", 
              "id": "http://www.grid.ac/institutes/grid.412110.7", 
              "name": [
                "National University of Defense Technology, 230037, Hefei, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yan", 
            "givenName": "Xuehu", 
            "id": "sg:person.010467364517.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010467364517.31"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National University of Defense Technology, 230037, Hefei, China", 
              "id": "http://www.grid.ac/institutes/grid.412110.7", 
              "name": [
                "National University of Defense Technology, 230037, Hefei, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Feng", 
            "id": "sg:person.016600326533.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016600326533.28"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Auckland University of Technology, Auckland, New Zealand", 
              "id": "http://www.grid.ac/institutes/grid.252547.3", 
              "name": [
                "Auckland University of Technology, Auckland, New Zealand"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yan", 
            "givenName": "Wei Qi", 
            "id": "sg:person.016172257054.22", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016172257054.22"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National University of Defense Technology, 230037, Hefei, China", 
              "id": "http://www.grid.ac/institutes/grid.412110.7", 
              "name": [
                "National University of Defense Technology, 230037, Hefei, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yang", 
            "givenName": "Guozheng", 
            "id": "sg:person.011516666750.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011516666750.26"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National University of Defense Technology, 230037, Hefei, China", 
              "id": "http://www.grid.ac/institutes/grid.412110.7", 
              "name": [
                "National University of Defense Technology, 230037, Hefei, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lu", 
            "givenName": "Yuliang", 
            "id": "sg:person.015112370271.93", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015112370271.93"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bfb0053419", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008839066", 
              "https://doi.org/10.1007/bfb0053419"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11554-015-0540-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022432477", 
              "https://doi.org/10.1007/s11554-015-0540-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-981-10-2053-7_23", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027386787", 
              "https://doi.org/10.1007/978-981-10-2053-7_23"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11042-017-5465-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099682813", 
              "https://doi.org/10.1007/s11042-017-5465-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-981-10-6872-0_24", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1100921838", 
              "https://doi.org/10.1007/978-981-10-6872-0_24"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11042-018-6779-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107796629", 
              "https://doi.org/10.1007/s11042-018-6779-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11042-019-7471-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1112945791", 
              "https://doi.org/10.1007/s11042-019-7471-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11042-017-4421-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083744330", 
              "https://doi.org/10.1007/s11042-017-4421-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11042-017-5482-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1099690540", 
              "https://doi.org/10.1007/s11042-017-5482-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11042-017-5215-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091893616", 
              "https://doi.org/10.1007/s11042-017-5215-7"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2020-05-06", 
        "datePublishedReg": "2020-05-06", 
        "description": "The weighted visual cryptographic scheme (WVCS) allows the dealer to assign a weight to every shadow (participant) according to the participant\u2019s importance so that the ability of each shadow to reveal a secret image can be varied. However, the previous weighted random grid-based VCS (WRGVCS) has the shortcoming of low visual quality. The contribution of this paper is that a new WRGVCS for a (k, n) threshold is designed to improve the image quality of the revealed secret image and to realize more features. RG is utilized to achieve the features of no pixel expansion and no codebook design. The probability of covering the valid bits is improved to improve the image quality. Experimental results and security analyses indicate the effectiveness of the designed scheme. Contrast and feature comparisons with previous weighted VCS approaches exhibit improvements in the designed scheme over other relative weighted VCSs. The limitations of our work are that the weighted effect decreases for some thresholds, and the theoretical contrast of the designed scheme is not derived directly by the parameters.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11042-020-08970-y", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.8304044", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1044869", 
            "issn": [
              "1380-7501", 
              "1573-7721"
            ], 
            "name": "Multimedia Tools and Applications", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "29-30", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "79"
          }
        ], 
        "keywords": [
          "visual cryptographic scheme", 
          "secret image", 
          "cryptographic schemes", 
          "image quality", 
          "low visual quality", 
          "pixel expansion", 
          "security analysis", 
          "participants' importance", 
          "feature comparison", 
          "visual quality", 
          "valid bits", 
          "codebook design", 
          "more features", 
          "improved image quality", 
          "experimental results", 
          "scheme", 
          "VCS", 
          "images", 
          "exhibit improvement", 
          "features", 
          "bits", 
          "quality", 
          "shadow", 
          "shortcomings", 
          "effectiveness", 
          "design", 
          "work", 
          "limitations", 
          "dealers", 
          "probability", 
          "theoretical contrast", 
          "threshold", 
          "improvement", 
          "results", 
          "ability", 
          "importance", 
          "contribution", 
          "parameters", 
          "comparison", 
          "analysis", 
          "weight", 
          "expansion", 
          "contrast", 
          "RG", 
          "effect", 
          "paper"
        ], 
        "name": "Weighted visual cryptographic scheme with improved image quality", 
        "pagination": "21345-21360", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1127413512"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11042-020-08970-y"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11042-020-08970-y", 
          "https://app.dimensions.ai/details/publication/pub.1127413512"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:41", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_845.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11042-020-08970-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11042-020-08970-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11042-020-08970-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11042-020-08970-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11042-020-08970-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    176 TRIPLES      21 PREDICATES      80 URIs      62 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11042-020-08970-y schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N5de8350a1ec34314939147dcaa043107
    4 schema:citation sg:pub.10.1007/978-981-10-2053-7_23
    5 sg:pub.10.1007/978-981-10-6872-0_24
    6 sg:pub.10.1007/bfb0053419
    7 sg:pub.10.1007/s11042-017-4421-7
    8 sg:pub.10.1007/s11042-017-5215-7
    9 sg:pub.10.1007/s11042-017-5465-4
    10 sg:pub.10.1007/s11042-017-5482-3
    11 sg:pub.10.1007/s11042-018-6779-6
    12 sg:pub.10.1007/s11042-019-7471-1
    13 sg:pub.10.1007/s11554-015-0540-4
    14 schema:datePublished 2020-05-06
    15 schema:datePublishedReg 2020-05-06
    16 schema:description The weighted visual cryptographic scheme (WVCS) allows the dealer to assign a weight to every shadow (participant) according to the participant’s importance so that the ability of each shadow to reveal a secret image can be varied. However, the previous weighted random grid-based VCS (WRGVCS) has the shortcoming of low visual quality. The contribution of this paper is that a new WRGVCS for a (k, n) threshold is designed to improve the image quality of the revealed secret image and to realize more features. RG is utilized to achieve the features of no pixel expansion and no codebook design. The probability of covering the valid bits is improved to improve the image quality. Experimental results and security analyses indicate the effectiveness of the designed scheme. Contrast and feature comparisons with previous weighted VCS approaches exhibit improvements in the designed scheme over other relative weighted VCSs. The limitations of our work are that the weighted effect decreases for some thresholds, and the theoretical contrast of the designed scheme is not derived directly by the parameters.
    17 schema:genre article
    18 schema:isAccessibleForFree false
    19 schema:isPartOf N56fa9a5f911d4450a5b49f8c353f6f81
    20 N88a5938fd294424095c888f125e4bd0e
    21 sg:journal.1044869
    22 schema:keywords RG
    23 VCS
    24 ability
    25 analysis
    26 bits
    27 codebook design
    28 comparison
    29 contrast
    30 contribution
    31 cryptographic schemes
    32 dealers
    33 design
    34 effect
    35 effectiveness
    36 exhibit improvement
    37 expansion
    38 experimental results
    39 feature comparison
    40 features
    41 image quality
    42 images
    43 importance
    44 improved image quality
    45 improvement
    46 limitations
    47 low visual quality
    48 more features
    49 paper
    50 parameters
    51 participants' importance
    52 pixel expansion
    53 probability
    54 quality
    55 results
    56 scheme
    57 secret image
    58 security analysis
    59 shadow
    60 shortcomings
    61 theoretical contrast
    62 threshold
    63 valid bits
    64 visual cryptographic scheme
    65 visual quality
    66 weight
    67 work
    68 schema:name Weighted visual cryptographic scheme with improved image quality
    69 schema:pagination 21345-21360
    70 schema:productId N6ba35543cd164477af1e8ded30edd78e
    71 N77d022d13e7e471696cc92715fbbe450
    72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1127413512
    73 https://doi.org/10.1007/s11042-020-08970-y
    74 schema:sdDatePublished 2022-12-01T06:41
    75 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    76 schema:sdPublisher Ne7c25f4615be420f863e44f02e2466ce
    77 schema:url https://doi.org/10.1007/s11042-020-08970-y
    78 sgo:license sg:explorer/license/
    79 sgo:sdDataset articles
    80 rdf:type schema:ScholarlyArticle
    81 N0a21764d19c04de481b878dcad3c6a92 rdf:first sg:person.011516666750.26
    82 rdf:rest N29a113adf4ff4528a10d0885c61bf741
    83 N29a113adf4ff4528a10d0885c61bf741 rdf:first sg:person.015112370271.93
    84 rdf:rest rdf:nil
    85 N46418c22761f4627839c22fad207922f rdf:first sg:person.016172257054.22
    86 rdf:rest N0a21764d19c04de481b878dcad3c6a92
    87 N56fa9a5f911d4450a5b49f8c353f6f81 schema:volumeNumber 79
    88 rdf:type schema:PublicationVolume
    89 N5de8350a1ec34314939147dcaa043107 rdf:first sg:person.010467364517.31
    90 rdf:rest Nfc0e0597664d4f7cac6e597213ba3d1b
    91 N6ba35543cd164477af1e8ded30edd78e schema:name dimensions_id
    92 schema:value pub.1127413512
    93 rdf:type schema:PropertyValue
    94 N77d022d13e7e471696cc92715fbbe450 schema:name doi
    95 schema:value 10.1007/s11042-020-08970-y
    96 rdf:type schema:PropertyValue
    97 N88a5938fd294424095c888f125e4bd0e schema:issueNumber 29-30
    98 rdf:type schema:PublicationIssue
    99 Ne7c25f4615be420f863e44f02e2466ce schema:name Springer Nature - SN SciGraph project
    100 rdf:type schema:Organization
    101 Nfc0e0597664d4f7cac6e597213ba3d1b rdf:first sg:person.016600326533.28
    102 rdf:rest N46418c22761f4627839c22fad207922f
    103 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    104 schema:name Information and Computing Sciences
    105 rdf:type schema:DefinedTerm
    106 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    107 schema:name Artificial Intelligence and Image Processing
    108 rdf:type schema:DefinedTerm
    109 sg:grant.8304044 http://pending.schema.org/fundedItem sg:pub.10.1007/s11042-020-08970-y
    110 rdf:type schema:MonetaryGrant
    111 sg:journal.1044869 schema:issn 1380-7501
    112 1573-7721
    113 schema:name Multimedia Tools and Applications
    114 schema:publisher Springer Nature
    115 rdf:type schema:Periodical
    116 sg:person.010467364517.31 schema:affiliation grid-institutes:grid.412110.7
    117 schema:familyName Yan
    118 schema:givenName Xuehu
    119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010467364517.31
    120 rdf:type schema:Person
    121 sg:person.011516666750.26 schema:affiliation grid-institutes:grid.412110.7
    122 schema:familyName Yang
    123 schema:givenName Guozheng
    124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011516666750.26
    125 rdf:type schema:Person
    126 sg:person.015112370271.93 schema:affiliation grid-institutes:grid.412110.7
    127 schema:familyName Lu
    128 schema:givenName Yuliang
    129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015112370271.93
    130 rdf:type schema:Person
    131 sg:person.016172257054.22 schema:affiliation grid-institutes:grid.252547.3
    132 schema:familyName Yan
    133 schema:givenName Wei Qi
    134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016172257054.22
    135 rdf:type schema:Person
    136 sg:person.016600326533.28 schema:affiliation grid-institutes:grid.412110.7
    137 schema:familyName Liu
    138 schema:givenName Feng
    139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016600326533.28
    140 rdf:type schema:Person
    141 sg:pub.10.1007/978-981-10-2053-7_23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027386787
    142 https://doi.org/10.1007/978-981-10-2053-7_23
    143 rdf:type schema:CreativeWork
    144 sg:pub.10.1007/978-981-10-6872-0_24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100921838
    145 https://doi.org/10.1007/978-981-10-6872-0_24
    146 rdf:type schema:CreativeWork
    147 sg:pub.10.1007/bfb0053419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008839066
    148 https://doi.org/10.1007/bfb0053419
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1007/s11042-017-4421-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083744330
    151 https://doi.org/10.1007/s11042-017-4421-7
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1007/s11042-017-5215-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091893616
    154 https://doi.org/10.1007/s11042-017-5215-7
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1007/s11042-017-5465-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099682813
    157 https://doi.org/10.1007/s11042-017-5465-4
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1007/s11042-017-5482-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099690540
    160 https://doi.org/10.1007/s11042-017-5482-3
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1007/s11042-018-6779-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107796629
    163 https://doi.org/10.1007/s11042-018-6779-6
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1007/s11042-019-7471-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112945791
    166 https://doi.org/10.1007/s11042-019-7471-1
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1007/s11554-015-0540-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022432477
    169 https://doi.org/10.1007/s11554-015-0540-4
    170 rdf:type schema:CreativeWork
    171 grid-institutes:grid.252547.3 schema:alternateName Auckland University of Technology, Auckland, New Zealand
    172 schema:name Auckland University of Technology, Auckland, New Zealand
    173 rdf:type schema:Organization
    174 grid-institutes:grid.412110.7 schema:alternateName National University of Defense Technology, 230037, Hefei, China
    175 schema:name National University of Defense Technology, 230037, Hefei, China
    176 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...