An adaptive image feature matching method using mixed Vocabulary-KD tree View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-18

AUTHORS

Fengquan Zhang, Yahui Gao, Liuqing Xu

ABSTRACT

This paper proposes an adaptive scale-invariant feature matching method based on data clustering, to solve the problem of low robustness of the KD tree matching method caused by SIFT feature noise sensitivity, and our method can be used to AR applications. The method has two stages: offline data re-clustering and online two-stage feature matching. This paper is the first to present a Vocabulary-KD data structure which achieves SIFT using KD tree by tuning the number of features of the Vocabulary nodes. Moreover, based on the Vocabulary-KD data structure, an adaptive feature matching method is proposed, which is consist of two clustering, one on the feature sets and the other on the feature sets contained by the leaf nodes of the Vocabulary-KD tree, along with adaptive adjustment of the relevant parameters of the Vocabulary-KD tree. At last, key images are selected in real-time for the second stage feature matching. The different results show that the proposed method can effectively resist noise, improve the adaptivity of the SIFT feature matching method, so as to achieve the trade-off between efficiency and robustness. More... »

PAGES

1-19

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11042-019-7438-2

DOI

http://dx.doi.org/10.1007/s11042-019-7438-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112852892


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "North China University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.440852.f", 
          "name": [
            "School of computer science, North China University of Technology, 100144, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Fengquan", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "North China University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.440852.f", 
          "name": [
            "School of computer science, North China University of Technology, 100144, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gao", 
        "givenName": "Yahui", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Remote Sensing and Digital Earth", 
          "id": "https://www.grid.ac/institutes/grid.458443.a", 
          "name": [
            "Airborne Remote Sensing Center, Institute of Remote Sensing and Digital Earth Chinese Academy of Sciences, 100094, Beijing, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xu", 
        "givenName": "Liuqing", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/b:visi.0000020671.28016.e8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009661627", 
          "https://doi.org/10.1023/b:visi.0000020671.28016.e8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neuroimage.2009.10.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011855844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1010051815785", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013146343", 
          "https://doi.org/10.1023/a:1010051815785"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00263763", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013672587", 
          "https://doi.org/10.1007/bf00263763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00263763", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013672587", 
          "https://doi.org/10.1007/bf00263763"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/331499.331504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026347712"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1008045108935", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041767492", 
          "https://doi.org/10.1023/a:1008045108935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jsen.2015.2432127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061323991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcsvt.2014.2302535", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061576257"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2002.1017616", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061742389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2005.188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061742845"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00500-017-2940-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092993853", 
          "https://doi.org/10.1007/s00500-017-2940-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00500-017-2940-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092993853", 
          "https://doi.org/10.1007/s00500-017-2940-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2006.264", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093301542"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2000.855899", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094093086"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2007.383150", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094633078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5244/c.2.23", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099320318"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iecon.2017.8216600", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099747573"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccons.2017.8250602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100347945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/access.2018.2834540", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103912532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11071-018-4458-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105406829", 
          "https://doi.org/10.1007/s11071-018-4458-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12555-017-0192-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105830747", 
          "https://doi.org/10.1007/s12555-017-0192-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2018.2870930", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107094912"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2018.2872906", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107307303"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.euromechsol.2018.10.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107825142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/3291060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111376603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/3291060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111376603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/3291060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111376603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/3291060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111376603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/3291060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111376603"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/3295822", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111376630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/3295822", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111376630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/3295822", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111376630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/3295822", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111376630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/3295822", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111376630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/access.2019.2897580", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111937694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/access.2019.2897580", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111937694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/access.2019.2897580", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111937694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/access.2019.2897580", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111937694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/access.2019.2897580", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111937694"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-18", 
    "datePublishedReg": "2019-03-18", 
    "description": "This paper proposes an adaptive scale-invariant feature matching method based on data clustering, to solve the problem of low robustness of the KD tree matching method caused by SIFT feature noise sensitivity, and our method can be used to AR applications. The method has two stages: offline data re-clustering and online two-stage feature matching. This paper is the first to present a Vocabulary-KD data structure which achieves SIFT using KD tree by tuning the number of features of the Vocabulary nodes. Moreover, based on the Vocabulary-KD data structure, an adaptive feature matching method is proposed, which is consist of two clustering, one on the feature sets and the other on the feature sets contained by the leaf nodes of the Vocabulary-KD tree, along with adaptive adjustment of the relevant parameters of the Vocabulary-KD tree. At last, key images are selected in real-time for the second stage feature matching. The different results show that the proposed method can effectively resist noise, improve the adaptivity of the SIFT feature matching method, so as to achieve the trade-off between efficiency and robustness.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11042-019-7438-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1044869", 
        "issn": [
          "1380-7501", 
          "1573-7721"
        ], 
        "name": "Multimedia Tools and Applications", 
        "type": "Periodical"
      }
    ], 
    "name": "An adaptive image feature matching method using mixed Vocabulary-KD tree", 
    "pagination": "1-19", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5a5eb96ec4d9477f050ecaca67a495507bcb0e98b0529f2eb4c46914cc9d2ab0"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11042-019-7438-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112852892"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11042-019-7438-2", 
      "https://app.dimensions.ai/details/publication/pub.1112852892"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:16", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000361_0000000361/records_54015_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11042-019-7438-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11042-019-7438-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11042-019-7438-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11042-019-7438-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11042-019-7438-2'


 

This table displays all metadata directly associated to this object as RDF triples.

154 TRIPLES      21 PREDICATES      50 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11042-019-7438-2 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nf85585c2d6154f25a816be8c7d63742a
4 schema:citation sg:pub.10.1007/bf00263763
5 sg:pub.10.1007/s00500-017-2940-9
6 sg:pub.10.1007/s11071-018-4458-9
7 sg:pub.10.1007/s12555-017-0192-7
8 sg:pub.10.1023/a:1008045108935
9 sg:pub.10.1023/a:1010051815785
10 sg:pub.10.1023/b:visi.0000020671.28016.e8
11 https://doi.org/10.1016/j.euromechsol.2018.10.016
12 https://doi.org/10.1016/j.neuroimage.2009.10.032
13 https://doi.org/10.1109/access.2018.2834540
14 https://doi.org/10.1109/access.2019.2897580
15 https://doi.org/10.1109/cvpr.2000.855899
16 https://doi.org/10.1109/cvpr.2006.264
17 https://doi.org/10.1109/cvpr.2007.383150
18 https://doi.org/10.1109/iccons.2017.8250602
19 https://doi.org/10.1109/iecon.2017.8216600
20 https://doi.org/10.1109/jsen.2015.2432127
21 https://doi.org/10.1109/tcsvt.2014.2302535
22 https://doi.org/10.1109/tip.2018.2870930
23 https://doi.org/10.1109/tip.2018.2872906
24 https://doi.org/10.1109/tpami.2002.1017616
25 https://doi.org/10.1109/tpami.2005.188
26 https://doi.org/10.1145/3291060
27 https://doi.org/10.1145/3295822
28 https://doi.org/10.1145/331499.331504
29 https://doi.org/10.5244/c.2.23
30 schema:datePublished 2019-03-18
31 schema:datePublishedReg 2019-03-18
32 schema:description This paper proposes an adaptive scale-invariant feature matching method based on data clustering, to solve the problem of low robustness of the KD tree matching method caused by SIFT feature noise sensitivity, and our method can be used to AR applications. The method has two stages: offline data re-clustering and online two-stage feature matching. This paper is the first to present a Vocabulary-KD data structure which achieves SIFT using KD tree by tuning the number of features of the Vocabulary nodes. Moreover, based on the Vocabulary-KD data structure, an adaptive feature matching method is proposed, which is consist of two clustering, one on the feature sets and the other on the feature sets contained by the leaf nodes of the Vocabulary-KD tree, along with adaptive adjustment of the relevant parameters of the Vocabulary-KD tree. At last, key images are selected in real-time for the second stage feature matching. The different results show that the proposed method can effectively resist noise, improve the adaptivity of the SIFT feature matching method, so as to achieve the trade-off between efficiency and robustness.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree false
36 schema:isPartOf sg:journal.1044869
37 schema:name An adaptive image feature matching method using mixed Vocabulary-KD tree
38 schema:pagination 1-19
39 schema:productId N20b282959948437d987ef9b9a7fd21d9
40 N274122070c2f45acbf6ace21f9b67060
41 N8a0b1a16f7154cafb8c8837d6b2a0751
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112852892
43 https://doi.org/10.1007/s11042-019-7438-2
44 schema:sdDatePublished 2019-04-11T12:16
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher N4950eeab6d144f7f85aba0fac018c16b
47 schema:url https://link.springer.com/10.1007%2Fs11042-019-7438-2
48 sgo:license sg:explorer/license/
49 sgo:sdDataset articles
50 rdf:type schema:ScholarlyArticle
51 N20b282959948437d987ef9b9a7fd21d9 schema:name readcube_id
52 schema:value 5a5eb96ec4d9477f050ecaca67a495507bcb0e98b0529f2eb4c46914cc9d2ab0
53 rdf:type schema:PropertyValue
54 N274122070c2f45acbf6ace21f9b67060 schema:name dimensions_id
55 schema:value pub.1112852892
56 rdf:type schema:PropertyValue
57 N4950eeab6d144f7f85aba0fac018c16b schema:name Springer Nature - SN SciGraph project
58 rdf:type schema:Organization
59 N6ec9bb75de064eecbf25873857e778b6 schema:affiliation https://www.grid.ac/institutes/grid.458443.a
60 schema:familyName Xu
61 schema:givenName Liuqing
62 rdf:type schema:Person
63 N8a0b1a16f7154cafb8c8837d6b2a0751 schema:name doi
64 schema:value 10.1007/s11042-019-7438-2
65 rdf:type schema:PropertyValue
66 Na264eeb65d2f45a290ada692294c64c9 schema:affiliation https://www.grid.ac/institutes/grid.440852.f
67 schema:familyName Zhang
68 schema:givenName Fengquan
69 rdf:type schema:Person
70 Nb6ad864ce0bb47889ead3eed34379278 rdf:first N6ec9bb75de064eecbf25873857e778b6
71 rdf:rest rdf:nil
72 Nb85dcac05a6745ba80460fcd92086ce5 schema:affiliation https://www.grid.ac/institutes/grid.440852.f
73 schema:familyName Gao
74 schema:givenName Yahui
75 rdf:type schema:Person
76 Ne957f8bd8db543a38217164c4c1a93e4 rdf:first Nb85dcac05a6745ba80460fcd92086ce5
77 rdf:rest Nb6ad864ce0bb47889ead3eed34379278
78 Nf85585c2d6154f25a816be8c7d63742a rdf:first Na264eeb65d2f45a290ada692294c64c9
79 rdf:rest Ne957f8bd8db543a38217164c4c1a93e4
80 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
81 schema:name Information and Computing Sciences
82 rdf:type schema:DefinedTerm
83 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
84 schema:name Artificial Intelligence and Image Processing
85 rdf:type schema:DefinedTerm
86 sg:journal.1044869 schema:issn 1380-7501
87 1573-7721
88 schema:name Multimedia Tools and Applications
89 rdf:type schema:Periodical
90 sg:pub.10.1007/bf00263763 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013672587
91 https://doi.org/10.1007/bf00263763
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/s00500-017-2940-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092993853
94 https://doi.org/10.1007/s00500-017-2940-9
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/s11071-018-4458-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105406829
97 https://doi.org/10.1007/s11071-018-4458-9
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/s12555-017-0192-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105830747
100 https://doi.org/10.1007/s12555-017-0192-7
101 rdf:type schema:CreativeWork
102 sg:pub.10.1023/a:1008045108935 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041767492
103 https://doi.org/10.1023/a:1008045108935
104 rdf:type schema:CreativeWork
105 sg:pub.10.1023/a:1010051815785 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013146343
106 https://doi.org/10.1023/a:1010051815785
107 rdf:type schema:CreativeWork
108 sg:pub.10.1023/b:visi.0000020671.28016.e8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009661627
109 https://doi.org/10.1023/b:visi.0000020671.28016.e8
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/j.euromechsol.2018.10.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107825142
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/j.neuroimage.2009.10.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011855844
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1109/access.2018.2834540 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103912532
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1109/access.2019.2897580 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111937694
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1109/cvpr.2000.855899 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094093086
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1109/cvpr.2006.264 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093301542
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1109/cvpr.2007.383150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094633078
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1109/iccons.2017.8250602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100347945
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1109/iecon.2017.8216600 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099747573
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1109/jsen.2015.2432127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061323991
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1109/tcsvt.2014.2302535 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061576257
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1109/tip.2018.2870930 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107094912
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1109/tip.2018.2872906 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107307303
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1109/tpami.2002.1017616 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742389
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1109/tpami.2005.188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742845
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1145/3291060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111376603
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1145/3295822 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111376630
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1145/331499.331504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026347712
146 rdf:type schema:CreativeWork
147 https://doi.org/10.5244/c.2.23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099320318
148 rdf:type schema:CreativeWork
149 https://www.grid.ac/institutes/grid.440852.f schema:alternateName North China University of Technology
150 schema:name School of computer science, North China University of Technology, 100144, Beijing, China
151 rdf:type schema:Organization
152 https://www.grid.ac/institutes/grid.458443.a schema:alternateName Institute of Remote Sensing and Digital Earth
153 schema:name Airborne Remote Sensing Center, Institute of Remote Sensing and Digital Earth Chinese Academy of Sciences, 100094, Beijing, China
154 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...