Imbalanced big data classification based on virtual reality in cloud computing View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02-20

AUTHORS

Wen-da Xie, Xiaochun Cheng

ABSTRACT

Currently, there are many problems in imbalanced big data classification based on rough set with virtual reality technology in cloud computing. For example, redundant big data cleaning is not clear, the effect is poor for big data denoising and feature extraction, and the precision of classification is low. In this paper, an imbalanced big data classification is proposed based on Hubness and K nearest neighbor to address such problems. First, the SNM algorithm is used in order to efficient cleaning of redundant big data. Then, wavelet threshold denoising algorithm is used to denoise the big data to improve the denoising effect. Meantime, feature of big data is extracted based on Lyapunov theorem. Moreover, the Hubness and K-nearest neighbor algorithms are used to achieve high precision of imbalanced big data classification. Experiments verify that the proposed method effectively strengthens current cleaning and denoising methods of redundant imbalanced big data, as well as improves accuracy of extraction and classification of big data. More... »

PAGES

1-18

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11042-019-7317-x

DOI

http://dx.doi.org/10.1007/s11042-019-7317-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112262052


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Jiangmen Polytechnic", 
          "id": "https://www.grid.ac/institutes/grid.496819.b", 
          "name": [
            "Department of Electronic and Information Technology, Jiangmen Polytechnic, 529000, Jinengmen, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xie", 
        "givenName": "Wen-da", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Middlesex University", 
          "id": "https://www.grid.ac/institutes/grid.15822.3c", 
          "name": [
            "School of Computer Science, Middlesex University, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cheng", 
        "givenName": "Xiaochun", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.neunet.2016.04.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004931793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11227-016-1631-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006224778", 
          "https://doi.org/10.1007/s11227-016-1631-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/2150704x.2015.1088668", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011973083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcp.2015.08.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018806524"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11042-014-2408-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027531420", 
          "https://doi.org/10.1007/s11042-014-2408-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1099/jgv.0.000016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030264824"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1099-1565(199803/04)9:2<88::aid-pca384>3.0.co;2-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030692270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11042-014-2446-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031332081", 
          "https://doi.org/10.1007/s11042-014-2446-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/2150704x.2014.999382", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034113014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tie.2015.2403797", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036279511"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00140139.2014.974683", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038227755"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btv635", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039122218"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2016.07.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046076654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1056/nejme1506813", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052619643"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3788/ope.20162401.0210", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071412135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnnls.2017.2654357", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085372099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnnls.2017.2654357", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085372099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/e19060269", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085993719"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jpdc.2017.10.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1092801910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/access.2018.2834916", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1103933216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jpdc.2018.06.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105152005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1155/2018/2016976", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1107380912"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02-20", 
    "datePublishedReg": "2019-02-20", 
    "description": "Currently, there are many problems in imbalanced big data classification based on rough set with virtual reality technology in cloud computing. For example, redundant big data cleaning is not clear, the effect is poor for big data denoising and feature extraction, and the precision of classification is low. In this paper, an imbalanced big data classification is proposed based on Hubness and K nearest neighbor to address such problems. First, the SNM algorithm is used in order to efficient cleaning of redundant big data. Then, wavelet threshold denoising algorithm is used to denoise the big data to improve the denoising effect. Meantime, feature of big data is extracted based on Lyapunov theorem. Moreover, the Hubness and K-nearest neighbor algorithms are used to achieve high precision of imbalanced big data classification. Experiments verify that the proposed method effectively strengthens current cleaning and denoising methods of redundant imbalanced big data, as well as improves accuracy of extraction and classification of big data.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11042-019-7317-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1044869", 
        "issn": [
          "1380-7501", 
          "1573-7721"
        ], 
        "name": "Multimedia Tools and Applications", 
        "type": "Periodical"
      }
    ], 
    "name": "Imbalanced big data classification based on virtual reality in cloud computing", 
    "pagination": "1-18", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "816d7b5b2c558094f04e76adb6b0d23089adb868b1f4e910323f72b252b8aef4"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11042-019-7317-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112262052"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11042-019-7317-x", 
      "https://app.dimensions.ai/details/publication/pub.1112262052"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:40", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99839_00000004.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11042-019-7317-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11042-019-7317-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11042-019-7317-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11042-019-7317-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11042-019-7317-x'


 

This table displays all metadata directly associated to this object as RDF triples.

129 TRIPLES      21 PREDICATES      45 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11042-019-7317-x schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N44727be90365467fa38d8e462d83bce1
4 schema:citation sg:pub.10.1007/s11042-014-2408-1
5 sg:pub.10.1007/s11042-014-2446-8
6 sg:pub.10.1007/s11227-016-1631-0
7 https://doi.org/10.1002/(sici)1099-1565(199803/04)9:2<88::aid-pca384>3.0.co;2-4
8 https://doi.org/10.1016/j.ins.2016.07.016
9 https://doi.org/10.1016/j.jcp.2015.08.027
10 https://doi.org/10.1016/j.jpdc.2017.10.022
11 https://doi.org/10.1016/j.jpdc.2018.06.012
12 https://doi.org/10.1016/j.neunet.2016.04.008
13 https://doi.org/10.1056/nejme1506813
14 https://doi.org/10.1080/00140139.2014.974683
15 https://doi.org/10.1080/2150704x.2014.999382
16 https://doi.org/10.1080/2150704x.2015.1088668
17 https://doi.org/10.1093/bioinformatics/btv635
18 https://doi.org/10.1099/jgv.0.000016
19 https://doi.org/10.1109/access.2018.2834916
20 https://doi.org/10.1109/tie.2015.2403797
21 https://doi.org/10.1109/tnnls.2017.2654357
22 https://doi.org/10.1155/2018/2016976
23 https://doi.org/10.3390/e19060269
24 https://doi.org/10.3788/ope.20162401.0210
25 schema:datePublished 2019-02-20
26 schema:datePublishedReg 2019-02-20
27 schema:description Currently, there are many problems in imbalanced big data classification based on rough set with virtual reality technology in cloud computing. For example, redundant big data cleaning is not clear, the effect is poor for big data denoising and feature extraction, and the precision of classification is low. In this paper, an imbalanced big data classification is proposed based on Hubness and K nearest neighbor to address such problems. First, the SNM algorithm is used in order to efficient cleaning of redundant big data. Then, wavelet threshold denoising algorithm is used to denoise the big data to improve the denoising effect. Meantime, feature of big data is extracted based on Lyapunov theorem. Moreover, the Hubness and K-nearest neighbor algorithms are used to achieve high precision of imbalanced big data classification. Experiments verify that the proposed method effectively strengthens current cleaning and denoising methods of redundant imbalanced big data, as well as improves accuracy of extraction and classification of big data.
28 schema:genre research_article
29 schema:inLanguage en
30 schema:isAccessibleForFree false
31 schema:isPartOf sg:journal.1044869
32 schema:name Imbalanced big data classification based on virtual reality in cloud computing
33 schema:pagination 1-18
34 schema:productId Nb206d383dd574e70bf5589ffc0229075
35 Nc8a4e9dd6c494680a26c2aa8e2dea446
36 Nefb3024ca4ea4116be4dbdbb65c8c9aa
37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112262052
38 https://doi.org/10.1007/s11042-019-7317-x
39 schema:sdDatePublished 2019-04-11T09:40
40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
41 schema:sdPublisher N4b0d922ced9447948d75d1c56fb5eb08
42 schema:url https://link.springer.com/10.1007%2Fs11042-019-7317-x
43 sgo:license sg:explorer/license/
44 sgo:sdDataset articles
45 rdf:type schema:ScholarlyArticle
46 N44727be90365467fa38d8e462d83bce1 rdf:first N8384e58d0b6f4886b5aa541aaafc474a
47 rdf:rest N76b4a9cb74ce4261bc68e644f5797af2
48 N4b0d922ced9447948d75d1c56fb5eb08 schema:name Springer Nature - SN SciGraph project
49 rdf:type schema:Organization
50 N76b4a9cb74ce4261bc68e644f5797af2 rdf:first Na142e47d6e344856875aec1253877366
51 rdf:rest rdf:nil
52 N8384e58d0b6f4886b5aa541aaafc474a schema:affiliation https://www.grid.ac/institutes/grid.496819.b
53 schema:familyName Xie
54 schema:givenName Wen-da
55 rdf:type schema:Person
56 Na142e47d6e344856875aec1253877366 schema:affiliation https://www.grid.ac/institutes/grid.15822.3c
57 schema:familyName Cheng
58 schema:givenName Xiaochun
59 rdf:type schema:Person
60 Nb206d383dd574e70bf5589ffc0229075 schema:name readcube_id
61 schema:value 816d7b5b2c558094f04e76adb6b0d23089adb868b1f4e910323f72b252b8aef4
62 rdf:type schema:PropertyValue
63 Nc8a4e9dd6c494680a26c2aa8e2dea446 schema:name dimensions_id
64 schema:value pub.1112262052
65 rdf:type schema:PropertyValue
66 Nefb3024ca4ea4116be4dbdbb65c8c9aa schema:name doi
67 schema:value 10.1007/s11042-019-7317-x
68 rdf:type schema:PropertyValue
69 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
70 schema:name Information and Computing Sciences
71 rdf:type schema:DefinedTerm
72 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
73 schema:name Artificial Intelligence and Image Processing
74 rdf:type schema:DefinedTerm
75 sg:journal.1044869 schema:issn 1380-7501
76 1573-7721
77 schema:name Multimedia Tools and Applications
78 rdf:type schema:Periodical
79 sg:pub.10.1007/s11042-014-2408-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027531420
80 https://doi.org/10.1007/s11042-014-2408-1
81 rdf:type schema:CreativeWork
82 sg:pub.10.1007/s11042-014-2446-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031332081
83 https://doi.org/10.1007/s11042-014-2446-8
84 rdf:type schema:CreativeWork
85 sg:pub.10.1007/s11227-016-1631-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006224778
86 https://doi.org/10.1007/s11227-016-1631-0
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1002/(sici)1099-1565(199803/04)9:2<88::aid-pca384>3.0.co;2-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030692270
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1016/j.ins.2016.07.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046076654
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1016/j.jcp.2015.08.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018806524
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1016/j.jpdc.2017.10.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092801910
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1016/j.jpdc.2018.06.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105152005
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1016/j.neunet.2016.04.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004931793
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1056/nejme1506813 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052619643
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1080/00140139.2014.974683 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038227755
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1080/2150704x.2014.999382 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034113014
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1080/2150704x.2015.1088668 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011973083
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1093/bioinformatics/btv635 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039122218
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1099/jgv.0.000016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030264824
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1109/access.2018.2834916 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103933216
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1109/tie.2015.2403797 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036279511
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1109/tnnls.2017.2654357 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085372099
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1155/2018/2016976 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107380912
119 rdf:type schema:CreativeWork
120 https://doi.org/10.3390/e19060269 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085993719
121 rdf:type schema:CreativeWork
122 https://doi.org/10.3788/ope.20162401.0210 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071412135
123 rdf:type schema:CreativeWork
124 https://www.grid.ac/institutes/grid.15822.3c schema:alternateName Middlesex University
125 schema:name School of Computer Science, Middlesex University, London, UK
126 rdf:type schema:Organization
127 https://www.grid.ac/institutes/grid.496819.b schema:alternateName Jiangmen Polytechnic
128 schema:name Department of Electronic and Information Technology, Jiangmen Polytechnic, 529000, Jinengmen, China
129 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...