Predicting quality of experience for online video service provisioning View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02-01

AUTHORS

Utku Bulkan, Tasos Dagiuklas

ABSTRACT

The expansion of the online video content continues in every area of the modern connected world and the need for measuring and predicting the Quality of Experience (QoE) for online video systems has never been this important. This paper has designed and developed a machine learning based methodology to derive QoE for online video systems. For this purpose, a platform has been developed where video content is unicasted to users so that objective video metrics are collected into a database. At the end of each video session, users are queried with a subjective survey about their experience. Both quantitative statistics and qualitative user survey information are used as training data to a variety of machine learning techniques including Artificial Neural Network (ANN), K-nearest Neighbours Algorithm (KNN) and Support Vector Machine (SVM) with a collection of cross-validation strategies. This methodology can efficiently answer the problem of predicting user experience for any online video service provider, while overcoming the problematic interpretation of subjective consumer experience in terms of quantitative system capacity metrics. More... »

PAGES

1-25

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11042-019-7164-9

DOI

http://dx.doi.org/10.1007/s11042-019-7164-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111840676


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "London South Bank University", 
          "id": "https://www.grid.ac/institutes/grid.4756.0", 
          "name": [
            "SuITE Research Group, Division of Computer Science, London South Bank University, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bulkan", 
        "givenName": "Utku", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "London South Bank University", 
          "id": "https://www.grid.ac/institutes/grid.4756.0", 
          "name": [
            "SuITE Research Group, Division of Computer Science, London South Bank University, London, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dagiuklas", 
        "givenName": "Tasos", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00530-012-0287-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000810274", 
          "https://doi.org/10.1007/s00530-012-0287-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.comcom.2010.03.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033014679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-21280-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039736763", 
          "https://doi.org/10.1007/978-3-642-21280-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-21280-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039736763", 
          "https://doi.org/10.1007/978-3-642-21280-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/glocom.2014.7036964", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095117179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icccn.2011.6005933", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095137115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1106817622", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9781118422007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106817622"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02-01", 
    "datePublishedReg": "2019-02-01", 
    "description": "The expansion of the online video content continues in every area of the modern connected world and the need for measuring and predicting the Quality of Experience (QoE) for online video systems has never been this important. This paper has designed and developed a machine learning based methodology to derive QoE for online video systems. For this purpose, a platform has been developed where video content is unicasted to users so that objective video metrics are collected into a database. At the end of each video session, users are queried with a subjective survey about their experience. Both quantitative statistics and qualitative user survey information are used as training data to a variety of machine learning techniques including Artificial Neural Network (ANN), K-nearest Neighbours Algorithm (KNN) and Support Vector Machine (SVM) with a collection of cross-validation strategies. This methodology can efficiently answer the problem of predicting user experience for any online video service provider, while overcoming the problematic interpretation of subjective consumer experience in terms of quantitative system capacity metrics.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11042-019-7164-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1044869", 
        "issn": [
          "1380-7501", 
          "1573-7721"
        ], 
        "name": "Multimedia Tools and Applications", 
        "type": "Periodical"
      }
    ], 
    "name": "Predicting quality of experience for online video service provisioning", 
    "pagination": "1-25", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d32ac09d0be31ce3730e90123d4a7fa81de0ee69a951d75f1c84da79dbe29c6b"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11042-019-7164-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111840676"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11042-019-7164-9", 
      "https://app.dimensions.ai/details/publication/pub.1111840676"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:31", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113647_00000005.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11042-019-7164-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11042-019-7164-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11042-019-7164-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11042-019-7164-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11042-019-7164-9'


 

This table displays all metadata directly associated to this object as RDF triples.

82 TRIPLES      21 PREDICATES      31 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11042-019-7164-9 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N6db6b015fa9241409b92dd204ed51831
4 schema:citation sg:pub.10.1007/978-3-642-21280-2
5 sg:pub.10.1007/s00530-012-0287-8
6 https://app.dimensions.ai/details/publication/pub.1106817622
7 https://doi.org/10.1002/9781118422007
8 https://doi.org/10.1016/j.comcom.2010.03.004
9 https://doi.org/10.1109/glocom.2014.7036964
10 https://doi.org/10.1109/icccn.2011.6005933
11 schema:datePublished 2019-02-01
12 schema:datePublishedReg 2019-02-01
13 schema:description The expansion of the online video content continues in every area of the modern connected world and the need for measuring and predicting the Quality of Experience (QoE) for online video systems has never been this important. This paper has designed and developed a machine learning based methodology to derive QoE for online video systems. For this purpose, a platform has been developed where video content is unicasted to users so that objective video metrics are collected into a database. At the end of each video session, users are queried with a subjective survey about their experience. Both quantitative statistics and qualitative user survey information are used as training data to a variety of machine learning techniques including Artificial Neural Network (ANN), K-nearest Neighbours Algorithm (KNN) and Support Vector Machine (SVM) with a collection of cross-validation strategies. This methodology can efficiently answer the problem of predicting user experience for any online video service provider, while overcoming the problematic interpretation of subjective consumer experience in terms of quantitative system capacity metrics.
14 schema:genre research_article
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf sg:journal.1044869
18 schema:name Predicting quality of experience for online video service provisioning
19 schema:pagination 1-25
20 schema:productId N025243a5957c45dfa81728f18b7d4dc4
21 N4e7187b14bf2482aa89349e91c8d6988
22 Nd8944041a61a4fd49ce06c9c4719e0cc
23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111840676
24 https://doi.org/10.1007/s11042-019-7164-9
25 schema:sdDatePublished 2019-04-11T10:31
26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
27 schema:sdPublisher N2ad79781c3174586999cc3fa48abc897
28 schema:url https://link.springer.com/10.1007%2Fs11042-019-7164-9
29 sgo:license sg:explorer/license/
30 sgo:sdDataset articles
31 rdf:type schema:ScholarlyArticle
32 N025243a5957c45dfa81728f18b7d4dc4 schema:name doi
33 schema:value 10.1007/s11042-019-7164-9
34 rdf:type schema:PropertyValue
35 N2ad79781c3174586999cc3fa48abc897 schema:name Springer Nature - SN SciGraph project
36 rdf:type schema:Organization
37 N4e7187b14bf2482aa89349e91c8d6988 schema:name readcube_id
38 schema:value d32ac09d0be31ce3730e90123d4a7fa81de0ee69a951d75f1c84da79dbe29c6b
39 rdf:type schema:PropertyValue
40 N504def9dfdbf40108e14c736570fdde6 rdf:first Ne62c960e6d5c48e4b11090785d7a9f6f
41 rdf:rest rdf:nil
42 N6db6b015fa9241409b92dd204ed51831 rdf:first Na04a281991b34a919c6a0e872877f2bf
43 rdf:rest N504def9dfdbf40108e14c736570fdde6
44 Na04a281991b34a919c6a0e872877f2bf schema:affiliation https://www.grid.ac/institutes/grid.4756.0
45 schema:familyName Bulkan
46 schema:givenName Utku
47 rdf:type schema:Person
48 Nd8944041a61a4fd49ce06c9c4719e0cc schema:name dimensions_id
49 schema:value pub.1111840676
50 rdf:type schema:PropertyValue
51 Ne62c960e6d5c48e4b11090785d7a9f6f schema:affiliation https://www.grid.ac/institutes/grid.4756.0
52 schema:familyName Dagiuklas
53 schema:givenName Tasos
54 rdf:type schema:Person
55 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
56 schema:name Information and Computing Sciences
57 rdf:type schema:DefinedTerm
58 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
59 schema:name Artificial Intelligence and Image Processing
60 rdf:type schema:DefinedTerm
61 sg:journal.1044869 schema:issn 1380-7501
62 1573-7721
63 schema:name Multimedia Tools and Applications
64 rdf:type schema:Periodical
65 sg:pub.10.1007/978-3-642-21280-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039736763
66 https://doi.org/10.1007/978-3-642-21280-2
67 rdf:type schema:CreativeWork
68 sg:pub.10.1007/s00530-012-0287-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000810274
69 https://doi.org/10.1007/s00530-012-0287-8
70 rdf:type schema:CreativeWork
71 https://app.dimensions.ai/details/publication/pub.1106817622 schema:CreativeWork
72 https://doi.org/10.1002/9781118422007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106817622
73 rdf:type schema:CreativeWork
74 https://doi.org/10.1016/j.comcom.2010.03.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033014679
75 rdf:type schema:CreativeWork
76 https://doi.org/10.1109/glocom.2014.7036964 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095117179
77 rdf:type schema:CreativeWork
78 https://doi.org/10.1109/icccn.2011.6005933 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095137115
79 rdf:type schema:CreativeWork
80 https://www.grid.ac/institutes/grid.4756.0 schema:alternateName London South Bank University
81 schema:name SuITE Research Group, Division of Computer Science, London South Bank University, London, UK
82 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...