Estimating critical path analysis on digital topology of the connectivity of pore media View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-01

AUTHORS

Yibo Zhao

ABSTRACT

The relationship between pore media microstructure and permeability has been a hot topic in the field of geosciences. However, there are still significant technical challenges in accurately estimating permeability, especially in spatially complex pore media. Here we introduce morphological of porous media, expressed by Euler-Poincaré Characteristic (Euler Number) which is a key parameter in the digital topology that describes the connectivity of pore media. In this short communication, the connectivity function of porous media is established by Euler number and used to determine the critical pore size in the theory of percolation. Then the critical path analysis (CPA) and percolation theory are combined to study the relationship between the Euler number and the permeability of porous media. Using twelve digital core samples, the empirical formula and the theoretical estimations of CPA-based model (Friedman and Seaton, 1998) are compared respectively with the experimental measurement data. The results show that the permeability estimation under the Euler number factor model is more accurate than the CPA-based model. Some possible sources of uncertainty are also discussed. The relationship between permeability and morphological (Euler Number) of porous media makes it possible to predict permeability of porous media accurately and reasonably. More... »

PAGES

1-16

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11042-018-6587-z

DOI

http://dx.doi.org/10.1007/s11042-018-6587-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1106473501


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2001", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Communication and Media Studies", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/20", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Language, Communication and Culture", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Shandong Women\u2019s University", 
          "id": "https://www.grid.ac/institutes/grid.495262.e", 
          "name": [
            "School of Mathematical Sciences, University of Electronic Science and Technology of China, 611731, Chengdu, Sichuan, China", 
            "School of Data and Computer Science, Shandong Women\u2019s University, 250300, Jinan, Shandong, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Yibo", 
        "id": "sg:person.012162340154.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012162340154.71"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.cageo.2010.03.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001801715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/98wr00939", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003089658"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/wr026i005p01047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004558444"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jcis.1994.1053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004582961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0031-3203(95)00058-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007327478"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0309-1708(01)00057-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007502484"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-6636(83)90025-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008822800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0167-6636(83)90025-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008822800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0734-189x(89)90147-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008966356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1190/1.2216930", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009013627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11242-011-9792-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010972511", 
          "https://doi.org/10.1007/s11242-011-9792-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2015wr017937", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012406799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/jb092ib01p00599", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014459937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1745-6584.2012.00930.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015063347"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.advwatres.2011.06.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015241692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0017-9310(02)00014-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015429772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2006wr005780", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022653689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0309-1708(00)00055-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023316976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/95wr02020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023927731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.advwatres.2016.06.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023974886"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.264504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024106082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.109.264504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024106082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-3093(72)90304-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024714994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-3093(72)90304-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024714994"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1190/1.1439954", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024900570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0166-8641(92)90016-s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025916639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/wrcr.20304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026037298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/jb089ib11p09425", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028066389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2818.1990.tb03039.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029473338"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2000jb900208", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029694900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/97jb02486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034448648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0008-8846(95)00069-o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038403139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/17/9/014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042720321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0309-1708(00)00058-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044822755"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1046186371", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-03771-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046186371", 
          "https://doi.org/10.1007/978-3-319-03771-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-03771-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046186371", 
          "https://doi.org/10.1007/978-3-319-03771-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.2808877", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057870811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.34.8179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060541693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.34.8179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060541693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.4.2612", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060550650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.4.2612", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060550650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.58.1411", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060794762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.58.1411", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060794762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1306/74d71c3f-2b21-11d7-8648000102c1865d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064949112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.advwatres.2017.03.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084056200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.advwatres.2017.03.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084056200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.advwatres.2017.03.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084056200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2118/95950-ms", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096942896"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.coal.2018.01.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100318433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.coal.2018.01.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100318433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1106883556", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-01", 
    "datePublishedReg": "2019-01-01", 
    "description": "The relationship between pore media microstructure and permeability has been a hot topic in the field of geosciences. However, there are still significant technical challenges in accurately estimating permeability, especially in spatially complex pore media. Here we introduce morphological of porous media, expressed by Euler-Poincar\u00e9 Characteristic (Euler Number) which is a key parameter in the digital topology that describes the connectivity of pore media. In this short communication, the connectivity function of porous media is established by Euler number and used to determine the critical pore size in the theory of percolation. Then the critical path analysis (CPA) and percolation theory are combined to study the relationship between the Euler number and the permeability of porous media. Using twelve digital core samples, the empirical formula and the theoretical estimations of CPA-based model (Friedman and Seaton, 1998) are compared respectively with the experimental measurement data. The results show that the permeability estimation under the Euler number factor model is more accurate than the CPA-based model. Some possible sources of uncertainty are also discussed. The relationship between permeability and morphological (Euler Number) of porous media makes it possible to predict permeability of porous media accurately and reasonably.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11042-018-6587-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1044869", 
        "issn": [
          "1380-7501", 
          "1573-7721"
        ], 
        "name": "Multimedia Tools and Applications", 
        "type": "Periodical"
      }
    ], 
    "name": "Estimating critical path analysis on digital topology of the connectivity of pore media", 
    "pagination": "1-16", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f794c6f91dc98bb1ce15fa084c4b54af165dbfa591ce65beb7a9c694a0f5ce4a"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11042-018-6587-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1106473501"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11042-018-6587-z", 
      "https://app.dimensions.ai/details/publication/pub.1106473501"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000605.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s11042-018-6587-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11042-018-6587-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11042-018-6587-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11042-018-6587-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11042-018-6587-z'


 

This table displays all metadata directly associated to this object as RDF triples.

182 TRIPLES      21 PREDICATES      67 URIs      17 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11042-018-6587-z schema:about anzsrc-for:20
2 anzsrc-for:2001
3 schema:author Nc28915d061f04104952b1113d60e72ed
4 schema:citation sg:pub.10.1007/978-3-319-03771-4
5 sg:pub.10.1007/s11242-011-9792-z
6 https://app.dimensions.ai/details/publication/pub.1046186371
7 https://app.dimensions.ai/details/publication/pub.1106883556
8 https://doi.org/10.1002/2015wr017937
9 https://doi.org/10.1002/wrcr.20304
10 https://doi.org/10.1006/jcis.1994.1053
11 https://doi.org/10.1016/0008-8846(95)00069-o
12 https://doi.org/10.1016/0022-3093(72)90304-3
13 https://doi.org/10.1016/0031-3203(95)00058-5
14 https://doi.org/10.1016/0166-8641(92)90016-s
15 https://doi.org/10.1016/0167-6636(83)90025-x
16 https://doi.org/10.1016/0734-189x(89)90147-3
17 https://doi.org/10.1016/j.advwatres.2011.06.010
18 https://doi.org/10.1016/j.advwatres.2016.06.016
19 https://doi.org/10.1016/j.advwatres.2017.03.016
20 https://doi.org/10.1016/j.cageo.2010.03.007
21 https://doi.org/10.1016/j.coal.2018.01.008
22 https://doi.org/10.1016/s0017-9310(02)00014-5
23 https://doi.org/10.1016/s0309-1708(00)00055-5
24 https://doi.org/10.1016/s0309-1708(00)00058-0
25 https://doi.org/10.1016/s0309-1708(01)00057-4
26 https://doi.org/10.1029/2000jb900208
27 https://doi.org/10.1029/2006wr005780
28 https://doi.org/10.1029/95wr02020
29 https://doi.org/10.1029/97jb02486
30 https://doi.org/10.1029/98wr00939
31 https://doi.org/10.1029/jb089ib11p09425
32 https://doi.org/10.1029/jb092ib01p00599
33 https://doi.org/10.1029/wr026i005p01047
34 https://doi.org/10.1063/1.2808877
35 https://doi.org/10.1088/0953-8984/17/9/014
36 https://doi.org/10.1103/physrevb.34.8179
37 https://doi.org/10.1103/physrevb.4.2612
38 https://doi.org/10.1103/physrevlett.109.264504
39 https://doi.org/10.1103/physrevlett.58.1411
40 https://doi.org/10.1111/j.1365-2818.1990.tb03039.x
41 https://doi.org/10.1111/j.1745-6584.2012.00930.x
42 https://doi.org/10.1190/1.1439954
43 https://doi.org/10.1190/1.2216930
44 https://doi.org/10.1306/74d71c3f-2b21-11d7-8648000102c1865d
45 https://doi.org/10.2118/95950-ms
46 schema:datePublished 2019-01
47 schema:datePublishedReg 2019-01-01
48 schema:description The relationship between pore media microstructure and permeability has been a hot topic in the field of geosciences. However, there are still significant technical challenges in accurately estimating permeability, especially in spatially complex pore media. Here we introduce morphological of porous media, expressed by Euler-Poincaré Characteristic (Euler Number) which is a key parameter in the digital topology that describes the connectivity of pore media. In this short communication, the connectivity function of porous media is established by Euler number and used to determine the critical pore size in the theory of percolation. Then the critical path analysis (CPA) and percolation theory are combined to study the relationship between the Euler number and the permeability of porous media. Using twelve digital core samples, the empirical formula and the theoretical estimations of CPA-based model (Friedman and Seaton, 1998) are compared respectively with the experimental measurement data. The results show that the permeability estimation under the Euler number factor model is more accurate than the CPA-based model. Some possible sources of uncertainty are also discussed. The relationship between permeability and morphological (Euler Number) of porous media makes it possible to predict permeability of porous media accurately and reasonably.
49 schema:genre research_article
50 schema:inLanguage en
51 schema:isAccessibleForFree false
52 schema:isPartOf sg:journal.1044869
53 schema:name Estimating critical path analysis on digital topology of the connectivity of pore media
54 schema:pagination 1-16
55 schema:productId N6d1e08080c8a432abbca81f445335bf9
56 Nb721cc206beb4b119664e0df512b0aa2
57 Nbf404bc9a30f47b580289e0df8c3eaef
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106473501
59 https://doi.org/10.1007/s11042-018-6587-z
60 schema:sdDatePublished 2019-04-10T15:15
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher Nda674b92378242e29ec1ef29f2d05e36
63 schema:url http://link.springer.com/10.1007/s11042-018-6587-z
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N6d1e08080c8a432abbca81f445335bf9 schema:name dimensions_id
68 schema:value pub.1106473501
69 rdf:type schema:PropertyValue
70 Nb721cc206beb4b119664e0df512b0aa2 schema:name readcube_id
71 schema:value f794c6f91dc98bb1ce15fa084c4b54af165dbfa591ce65beb7a9c694a0f5ce4a
72 rdf:type schema:PropertyValue
73 Nbf404bc9a30f47b580289e0df8c3eaef schema:name doi
74 schema:value 10.1007/s11042-018-6587-z
75 rdf:type schema:PropertyValue
76 Nc28915d061f04104952b1113d60e72ed rdf:first sg:person.012162340154.71
77 rdf:rest rdf:nil
78 Nda674b92378242e29ec1ef29f2d05e36 schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 anzsrc-for:20 schema:inDefinedTermSet anzsrc-for:
81 schema:name Language, Communication and Culture
82 rdf:type schema:DefinedTerm
83 anzsrc-for:2001 schema:inDefinedTermSet anzsrc-for:
84 schema:name Communication and Media Studies
85 rdf:type schema:DefinedTerm
86 sg:journal.1044869 schema:issn 1380-7501
87 1573-7721
88 schema:name Multimedia Tools and Applications
89 rdf:type schema:Periodical
90 sg:person.012162340154.71 schema:affiliation https://www.grid.ac/institutes/grid.495262.e
91 schema:familyName Zhao
92 schema:givenName Yibo
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012162340154.71
94 rdf:type schema:Person
95 sg:pub.10.1007/978-3-319-03771-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046186371
96 https://doi.org/10.1007/978-3-319-03771-4
97 rdf:type schema:CreativeWork
98 sg:pub.10.1007/s11242-011-9792-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1010972511
99 https://doi.org/10.1007/s11242-011-9792-z
100 rdf:type schema:CreativeWork
101 https://app.dimensions.ai/details/publication/pub.1046186371 schema:CreativeWork
102 https://app.dimensions.ai/details/publication/pub.1106883556 schema:CreativeWork
103 https://doi.org/10.1002/2015wr017937 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012406799
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1002/wrcr.20304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026037298
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1006/jcis.1994.1053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004582961
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/0008-8846(95)00069-o schema:sameAs https://app.dimensions.ai/details/publication/pub.1038403139
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/0022-3093(72)90304-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024714994
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/0031-3203(95)00058-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007327478
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/0166-8641(92)90016-s schema:sameAs https://app.dimensions.ai/details/publication/pub.1025916639
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/0167-6636(83)90025-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1008822800
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/0734-189x(89)90147-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008966356
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.advwatres.2011.06.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015241692
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.advwatres.2016.06.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023974886
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.advwatres.2017.03.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084056200
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.cageo.2010.03.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001801715
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.coal.2018.01.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100318433
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/s0017-9310(02)00014-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015429772
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/s0309-1708(00)00055-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023316976
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/s0309-1708(00)00058-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044822755
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/s0309-1708(01)00057-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007502484
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1029/2000jb900208 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029694900
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1029/2006wr005780 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022653689
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1029/95wr02020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023927731
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1029/97jb02486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034448648
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1029/98wr00939 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003089658
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1029/jb089ib11p09425 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028066389
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1029/jb092ib01p00599 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014459937
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1029/wr026i005p01047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004558444
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1063/1.2808877 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057870811
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1088/0953-8984/17/9/014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042720321
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1103/physrevb.34.8179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060541693
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1103/physrevb.4.2612 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060550650
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1103/physrevlett.109.264504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024106082
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1103/physrevlett.58.1411 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060794762
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1111/j.1365-2818.1990.tb03039.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1029473338
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1111/j.1745-6584.2012.00930.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1015063347
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1190/1.1439954 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024900570
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1190/1.2216930 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009013627
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1306/74d71c3f-2b21-11d7-8648000102c1865d schema:sameAs https://app.dimensions.ai/details/publication/pub.1064949112
176 rdf:type schema:CreativeWork
177 https://doi.org/10.2118/95950-ms schema:sameAs https://app.dimensions.ai/details/publication/pub.1096942896
178 rdf:type schema:CreativeWork
179 https://www.grid.ac/institutes/grid.495262.e schema:alternateName Shandong Women’s University
180 schema:name School of Data and Computer Science, Shandong Women’s University, 250300, Jinan, Shandong, China
181 School of Mathematical Sciences, University of Electronic Science and Technology of China, 611731, Chengdu, Sichuan, China
182 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...