A novel approach for mobile malware classification and detection in Android systems View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02

AUTHORS

Qingguo Zhou, Fang Feng, Zebang Shen, Rui Zhou, Meng-Yen Hsieh, Kuan-Ching Li

ABSTRACT

With the increasing number of malicious attacks, the way how to detect malicious Apps has drawn attention in mobile technology market. In this paper, we proposed a detection model to seek and track malware Apps actions in such devices. To characterize the behaviors of Apps, dynamic features of each App were constrained in 166-dimension and a novel machine learning classifier is employed to detect malware Apps, and alarm will be triggered if an Android-based App is detected as malicious. With such, we can avoid a detected malware spreading out in larger scale, affecting extensively our society. Detailed description of the detection model is provided, as well the core technologies of this novel machine learning classifier are presented. From experiments performed on a set of Android-based malware and benign Apps, we observe that the proposed classification algorithm achieves highest accuracy, true-positive rate, false-positive rate, precision, recall, f-measure in comparison to other methods as K-Nearest Neighbor (KNN), Naive Bayesian (NB), Support Vector Machine (SVM), Random Forest (RF), Logistic Regression (LR), Decision tree (DT), Linear Discriminant Analysis (LDA) and Back Propagation (BP). The proposed detection model is promising and can effectively be applied to Android malware detection, providing early detection and the prospect of warning users of threatens ahead. More... »

PAGES

1-24

References to SciGraph publications

  • 2012-02. “Andromaly”: a behavioral malware detection framework for android devices in JOURNAL OF INTELLIGENT INFORMATION SYSTEMS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11042-018-6498-z

    DOI

    http://dx.doi.org/10.1007/s11042-018-6498-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1106120819


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Lanzhou University", 
              "id": "https://www.grid.ac/institutes/grid.32566.34", 
              "name": [
                "School of Information Science and Engineering, Lanzhou University, Lanzhou, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhou", 
            "givenName": "Qingguo", 
            "id": "sg:person.015345043420.87", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015345043420.87"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Lanzhou University of Technology", 
              "id": "https://www.grid.ac/institutes/grid.411291.e", 
              "name": [
                "School of Information Science and Engineering, Lanzhou University, Lanzhou, China", 
                "School of Electronic and Information Engineering, Lanzhou Institute of Technology, Lanzhou, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Feng", 
            "givenName": "Fang", 
            "id": "sg:person.013563410754.96", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013563410754.96"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Lanzhou University", 
              "id": "https://www.grid.ac/institutes/grid.32566.34", 
              "name": [
                "School of Information Science and Engineering, Lanzhou University, Lanzhou, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shen", 
            "givenName": "Zebang", 
            "id": "sg:person.010337756130.63", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010337756130.63"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Lanzhou University", 
              "id": "https://www.grid.ac/institutes/grid.32566.34", 
              "name": [
                "School of Information Science and Engineering, Lanzhou University, Lanzhou, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhou", 
            "givenName": "Rui", 
            "id": "sg:person.015273067120.08", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015273067120.08"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Providence University", 
              "id": "https://www.grid.ac/institutes/grid.412550.7", 
              "name": [
                "Department of Computer Science and Information Engineering, Providence University, Taichung, Taiwan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hsieh", 
            "givenName": "Meng-Yen", 
            "id": "sg:person.014433143377.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014433143377.45"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Providence University", 
              "id": "https://www.grid.ac/institutes/grid.412550.7", 
              "name": [
                "Department of Computer Science and Information Engineering, Providence University, Taichung, Taiwan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Li", 
            "givenName": "Kuan-Ching", 
            "id": "sg:person.015765507523.81", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015765507523.81"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1145/1866307.1866317", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000607701"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jvlc.2012.02.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000611072"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2185448.2185466", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000855900"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cose.2012.05.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006322111"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cose.2014.11.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011315819"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jpdc.2016.10.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019161568"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10844-010-0148-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024284711", 
              "https://doi.org/10.1007/s10844-010-0148-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cose.2013.08.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029792828"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1999995.2000018", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042197476"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2660267.2660359", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042383227"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1982185.1982506", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048981100"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2133601.2133640", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051626403"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1653662.1653691", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052290405"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/surv.2013.101613.00077", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061446909"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tifs.2015.2491300", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061630683"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.7125/apan.36.4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1073609312"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/3021460.3021485", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084734411"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/3041008.3041010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085076091"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/bigdatacongress.2015.28", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093614122"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cis.2011.226", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094062995"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/msn.2012.43", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094434630"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iwcmc.2014.6906344", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095086134"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icse.2015.50", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095243975"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/asiajcis.2012.18", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095607224"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/3014812.3014861", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1096144784"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/3014812.3014861", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1096144784"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-02", 
        "datePublishedReg": "2019-02-01", 
        "description": "With the increasing number of malicious attacks, the way how to detect malicious Apps has drawn attention in mobile technology market. In this paper, we proposed a detection model to seek and track malware Apps actions in such devices. To characterize the behaviors of Apps, dynamic features of each App were constrained in 166-dimension and a novel machine learning classifier is employed to detect malware Apps, and alarm will be triggered if an Android-based App is detected as malicious. With such, we can avoid a detected malware spreading out in larger scale, affecting extensively our society. Detailed description of the detection model is provided, as well the core technologies of this novel machine learning classifier are presented. From experiments performed on a set of Android-based malware and benign Apps, we observe that the proposed classification algorithm achieves highest accuracy, true-positive rate, false-positive rate, precision, recall, f-measure in comparison to other methods as K-Nearest Neighbor (KNN), Naive Bayesian (NB), Support Vector Machine (SVM), Random Forest (RF), Logistic Regression (LR), Decision tree (DT), Linear Discriminant Analysis (LDA) and Back Propagation (BP). The proposed detection model is promising and can effectively be applied to Android malware detection, providing early detection and the prospect of warning users of threatens ahead.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11042-018-6498-z", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.4981036", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1044869", 
            "issn": [
              "1380-7501", 
              "1573-7721"
            ], 
            "name": "Multimedia Tools and Applications", 
            "type": "Periodical"
          }
        ], 
        "name": "A novel approach for mobile malware classification and detection in Android systems", 
        "pagination": "1-24", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "f7b2ca10134b6fd835f39cc75e608d668b069a0289756dc0a6e00fc5fcb9b53e"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11042-018-6498-z"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1106120819"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11042-018-6498-z", 
          "https://app.dimensions.ai/details/publication/pub.1106120819"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T00:12", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000494.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007/s11042-018-6498-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11042-018-6498-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11042-018-6498-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11042-018-6498-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11042-018-6498-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    175 TRIPLES      21 PREDICATES      50 URIs      17 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11042-018-6498-z schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N2e8007fc2a8648139e1cb469957f0270
    4 schema:citation sg:pub.10.1007/s10844-010-0148-x
    5 https://doi.org/10.1016/j.cose.2012.05.004
    6 https://doi.org/10.1016/j.cose.2013.08.010
    7 https://doi.org/10.1016/j.cose.2014.11.001
    8 https://doi.org/10.1016/j.jpdc.2016.10.012
    9 https://doi.org/10.1016/j.jvlc.2012.02.002
    10 https://doi.org/10.1109/asiajcis.2012.18
    11 https://doi.org/10.1109/bigdatacongress.2015.28
    12 https://doi.org/10.1109/cis.2011.226
    13 https://doi.org/10.1109/icse.2015.50
    14 https://doi.org/10.1109/iwcmc.2014.6906344
    15 https://doi.org/10.1109/msn.2012.43
    16 https://doi.org/10.1109/surv.2013.101613.00077
    17 https://doi.org/10.1109/tifs.2015.2491300
    18 https://doi.org/10.1145/1653662.1653691
    19 https://doi.org/10.1145/1866307.1866317
    20 https://doi.org/10.1145/1982185.1982506
    21 https://doi.org/10.1145/1999995.2000018
    22 https://doi.org/10.1145/2133601.2133640
    23 https://doi.org/10.1145/2185448.2185466
    24 https://doi.org/10.1145/2660267.2660359
    25 https://doi.org/10.1145/3014812.3014861
    26 https://doi.org/10.1145/3021460.3021485
    27 https://doi.org/10.1145/3041008.3041010
    28 https://doi.org/10.7125/apan.36.4
    29 schema:datePublished 2019-02
    30 schema:datePublishedReg 2019-02-01
    31 schema:description With the increasing number of malicious attacks, the way how to detect malicious Apps has drawn attention in mobile technology market. In this paper, we proposed a detection model to seek and track malware Apps actions in such devices. To characterize the behaviors of Apps, dynamic features of each App were constrained in 166-dimension and a novel machine learning classifier is employed to detect malware Apps, and alarm will be triggered if an Android-based App is detected as malicious. With such, we can avoid a detected malware spreading out in larger scale, affecting extensively our society. Detailed description of the detection model is provided, as well the core technologies of this novel machine learning classifier are presented. From experiments performed on a set of Android-based malware and benign Apps, we observe that the proposed classification algorithm achieves highest accuracy, true-positive rate, false-positive rate, precision, recall, f-measure in comparison to other methods as K-Nearest Neighbor (KNN), Naive Bayesian (NB), Support Vector Machine (SVM), Random Forest (RF), Logistic Regression (LR), Decision tree (DT), Linear Discriminant Analysis (LDA) and Back Propagation (BP). The proposed detection model is promising and can effectively be applied to Android malware detection, providing early detection and the prospect of warning users of threatens ahead.
    32 schema:genre research_article
    33 schema:inLanguage en
    34 schema:isAccessibleForFree false
    35 schema:isPartOf sg:journal.1044869
    36 schema:name A novel approach for mobile malware classification and detection in Android systems
    37 schema:pagination 1-24
    38 schema:productId N31d3a362d6d540b1975131739a0cfe5c
    39 N867064d8adb146b2b9625f12b85a6637
    40 Ncb0ccb296a7b4876958cd214fd616f72
    41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106120819
    42 https://doi.org/10.1007/s11042-018-6498-z
    43 schema:sdDatePublished 2019-04-11T00:12
    44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    45 schema:sdPublisher Nb85c53bcbe3943fca1051c2175a4a820
    46 schema:url http://link.springer.com/10.1007/s11042-018-6498-z
    47 sgo:license sg:explorer/license/
    48 sgo:sdDataset articles
    49 rdf:type schema:ScholarlyArticle
    50 N2c6b9701549740dc91d9d0a64107d4a3 rdf:first sg:person.015765507523.81
    51 rdf:rest rdf:nil
    52 N2e8007fc2a8648139e1cb469957f0270 rdf:first sg:person.015345043420.87
    53 rdf:rest Na790e75046fd406ea30fc95a0da5d12d
    54 N31d3a362d6d540b1975131739a0cfe5c schema:name dimensions_id
    55 schema:value pub.1106120819
    56 rdf:type schema:PropertyValue
    57 N649e99c0fb0b4c208614730ef20e31f1 rdf:first sg:person.015273067120.08
    58 rdf:rest N6d981f1b73814099bff3eb1a7101ca00
    59 N6d981f1b73814099bff3eb1a7101ca00 rdf:first sg:person.014433143377.45
    60 rdf:rest N2c6b9701549740dc91d9d0a64107d4a3
    61 N867064d8adb146b2b9625f12b85a6637 schema:name doi
    62 schema:value 10.1007/s11042-018-6498-z
    63 rdf:type schema:PropertyValue
    64 Na790e75046fd406ea30fc95a0da5d12d rdf:first sg:person.013563410754.96
    65 rdf:rest Nce28f5efe0bc468fad49ef77cf5cb66e
    66 Nb85c53bcbe3943fca1051c2175a4a820 schema:name Springer Nature - SN SciGraph project
    67 rdf:type schema:Organization
    68 Ncb0ccb296a7b4876958cd214fd616f72 schema:name readcube_id
    69 schema:value f7b2ca10134b6fd835f39cc75e608d668b069a0289756dc0a6e00fc5fcb9b53e
    70 rdf:type schema:PropertyValue
    71 Nce28f5efe0bc468fad49ef77cf5cb66e rdf:first sg:person.010337756130.63
    72 rdf:rest N649e99c0fb0b4c208614730ef20e31f1
    73 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    74 schema:name Information and Computing Sciences
    75 rdf:type schema:DefinedTerm
    76 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    77 schema:name Artificial Intelligence and Image Processing
    78 rdf:type schema:DefinedTerm
    79 sg:grant.4981036 http://pending.schema.org/fundedItem sg:pub.10.1007/s11042-018-6498-z
    80 rdf:type schema:MonetaryGrant
    81 sg:journal.1044869 schema:issn 1380-7501
    82 1573-7721
    83 schema:name Multimedia Tools and Applications
    84 rdf:type schema:Periodical
    85 sg:person.010337756130.63 schema:affiliation https://www.grid.ac/institutes/grid.32566.34
    86 schema:familyName Shen
    87 schema:givenName Zebang
    88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010337756130.63
    89 rdf:type schema:Person
    90 sg:person.013563410754.96 schema:affiliation https://www.grid.ac/institutes/grid.411291.e
    91 schema:familyName Feng
    92 schema:givenName Fang
    93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013563410754.96
    94 rdf:type schema:Person
    95 sg:person.014433143377.45 schema:affiliation https://www.grid.ac/institutes/grid.412550.7
    96 schema:familyName Hsieh
    97 schema:givenName Meng-Yen
    98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014433143377.45
    99 rdf:type schema:Person
    100 sg:person.015273067120.08 schema:affiliation https://www.grid.ac/institutes/grid.32566.34
    101 schema:familyName Zhou
    102 schema:givenName Rui
    103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015273067120.08
    104 rdf:type schema:Person
    105 sg:person.015345043420.87 schema:affiliation https://www.grid.ac/institutes/grid.32566.34
    106 schema:familyName Zhou
    107 schema:givenName Qingguo
    108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015345043420.87
    109 rdf:type schema:Person
    110 sg:person.015765507523.81 schema:affiliation https://www.grid.ac/institutes/grid.412550.7
    111 schema:familyName Li
    112 schema:givenName Kuan-Ching
    113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015765507523.81
    114 rdf:type schema:Person
    115 sg:pub.10.1007/s10844-010-0148-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1024284711
    116 https://doi.org/10.1007/s10844-010-0148-x
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1016/j.cose.2012.05.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006322111
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1016/j.cose.2013.08.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029792828
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1016/j.cose.2014.11.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011315819
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1016/j.jpdc.2016.10.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019161568
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1016/j.jvlc.2012.02.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000611072
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1109/asiajcis.2012.18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095607224
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1109/bigdatacongress.2015.28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093614122
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1109/cis.2011.226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094062995
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1109/icse.2015.50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095243975
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1109/iwcmc.2014.6906344 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095086134
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1109/msn.2012.43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094434630
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1109/surv.2013.101613.00077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061446909
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1109/tifs.2015.2491300 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061630683
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1145/1653662.1653691 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052290405
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1145/1866307.1866317 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000607701
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1145/1982185.1982506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048981100
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1145/1999995.2000018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042197476
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1145/2133601.2133640 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051626403
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1145/2185448.2185466 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000855900
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1145/2660267.2660359 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042383227
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1145/3014812.3014861 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096144784
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1145/3021460.3021485 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084734411
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1145/3041008.3041010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085076091
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.7125/apan.36.4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073609312
    165 rdf:type schema:CreativeWork
    166 https://www.grid.ac/institutes/grid.32566.34 schema:alternateName Lanzhou University
    167 schema:name School of Information Science and Engineering, Lanzhou University, Lanzhou, China
    168 rdf:type schema:Organization
    169 https://www.grid.ac/institutes/grid.411291.e schema:alternateName Lanzhou University of Technology
    170 schema:name School of Electronic and Information Engineering, Lanzhou Institute of Technology, Lanzhou, China
    171 School of Information Science and Engineering, Lanzhou University, Lanzhou, China
    172 rdf:type schema:Organization
    173 https://www.grid.ac/institutes/grid.412550.7 schema:alternateName Providence University
    174 schema:name Department of Computer Science and Information Engineering, Providence University, Taichung, Taiwan
    175 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...