On the modelling of CDNaaS deployment View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-07-31

AUTHORS

Utku Bulkan, Tasos Dagiuklas, Muddesar Iqbal

ABSTRACT

With the increasing demand for over the top media content, understanding user perception and Quality of Experience (QoE) estimation have become a major business necessity for service providers. Online video broadcasting is a multifaceted procedure and calculation of performance for the components that build up a streaming platform requires an overall understanding of the Content Delivery Network as a service (CDNaaS) concept. Therefore, to evaluate delivery quality and predicting user perception while considering NFV (Network Function Virtualization) and limited cloud resources, a relationship between these concepts is required. In this paper, a generalized mathematical model to calculate the success rate of different tiers of online video delivery system is presented. Furthermore, an algorithm that indicates the correct moment to switch between CDNs is provided to improve throughput efficiency while maintaining QoE and keeping the cloud hosting costs as lowest possible. More... »

PAGES

6805-6825

References to SciGraph publications

  • 2017-04-13. Mobility management in IEEE 802.11 WLAN using SDN/NFV technologies in EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING
  • 2004. Dynamic Content Placement for Mobile Content Distribution Networks in WEB CONTENT CACHING AND DISTRIBUTION
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11042-018-6441-3

    DOI

    http://dx.doi.org/10.1007/s11042-018-6441-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1105927342


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information Systems", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "SuITE Research Group, Division of Computer Science, London South Bank University, 103 Borough Road, SE1 0AA, London, UK", 
              "id": "http://www.grid.ac/institutes/grid.4756.0", 
              "name": [
                "SuITE Research Group, Division of Computer Science, London South Bank University, 103 Borough Road, SE1 0AA, London, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bulkan", 
            "givenName": "Utku", 
            "id": "sg:person.013012572630.51", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013012572630.51"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "SuITE Research Group, Division of Computer Science, London South Bank University, 103 Borough Road, SE1 0AA, London, UK", 
              "id": "http://www.grid.ac/institutes/grid.4756.0", 
              "name": [
                "SuITE Research Group, Division of Computer Science, London South Bank University, 103 Borough Road, SE1 0AA, London, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dagiuklas", 
            "givenName": "Tasos", 
            "id": "sg:person.013724335035.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013724335035.39"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "SuITE Research Group, Division of Computer Science, London South Bank University, 103 Borough Road, SE1 0AA, London, UK", 
              "id": "http://www.grid.ac/institutes/grid.4756.0", 
              "name": [
                "SuITE Research Group, Division of Computer Science, London South Bank University, 103 Borough Road, SE1 0AA, London, UK"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Iqbal", 
            "givenName": "Muddesar", 
            "id": "sg:person.07364535051.65", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07364535051.65"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-540-30471-5_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036475457", 
              "https://doi.org/10.1007/978-3-540-30471-5_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s13638-017-0856-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084814167", 
              "https://doi.org/10.1186/s13638-017-0856-9"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-07-31", 
        "datePublishedReg": "2018-07-31", 
        "description": "With the increasing demand for over the top media content, understanding user perception and Quality of Experience (QoE) estimation have become a major business necessity for service providers. Online video broadcasting is a multifaceted procedure and calculation of performance for the components that build up a streaming platform requires an overall understanding of the Content Delivery Network as a service (CDNaaS) concept. Therefore, to evaluate delivery quality and predicting user perception while considering NFV (Network Function Virtualization) and limited cloud resources, a relationship between these concepts is required. In this paper, a generalized mathematical model to calculate the success rate of different tiers of online video delivery system is presented. Furthermore, an algorithm that indicates the correct moment to switch between CDNs is provided to improve throughput efficiency while maintaining QoE and keeping the cloud hosting costs as lowest possible.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11042-018-6441-3", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1044869", 
            "issn": [
              "1380-7501", 
              "1573-7721"
            ], 
            "name": "Multimedia Tools and Applications", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "78"
          }
        ], 
        "keywords": [
          "limited cloud resources", 
          "Content Delivery Networks", 
          "video delivery system", 
          "user perceptions", 
          "cloud resources", 
          "video broadcasting", 
          "experience estimation", 
          "delivery networks", 
          "delivery quality", 
          "service providers", 
          "media content", 
          "business necessity", 
          "service concept", 
          "throughput efficiency", 
          "different tiers", 
          "calculation of performance", 
          "correct moment", 
          "NFV", 
          "QoE", 
          "CDN", 
          "algorithm", 
          "broadcasting", 
          "deployment", 
          "network", 
          "cloud", 
          "platform", 
          "multifaceted procedure", 
          "concept", 
          "mathematical model", 
          "quality", 
          "tier", 
          "resources", 
          "generalized mathematical model", 
          "providers", 
          "performance", 
          "estimation", 
          "cost", 
          "system", 
          "success rate", 
          "overall understanding", 
          "modelling", 
          "demand", 
          "efficiency", 
          "model", 
          "necessity", 
          "components", 
          "perception", 
          "procedure", 
          "content", 
          "understanding", 
          "moment", 
          "calculations", 
          "rate", 
          "relationship", 
          "delivery system", 
          "paper", 
          "top media content", 
          "major business necessity", 
          "Online video broadcasting", 
          "online video delivery system", 
          "CDNaaS deployment"
        ], 
        "name": "On the modelling of CDNaaS deployment", 
        "pagination": "6805-6825", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1105927342"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11042-018-6441-3"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11042-018-6441-3", 
          "https://app.dimensions.ai/details/publication/pub.1105927342"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:47", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_782.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11042-018-6441-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11042-018-6441-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11042-018-6441-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11042-018-6441-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11042-018-6441-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    145 TRIPLES      22 PREDICATES      89 URIs      78 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11042-018-6441-3 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 anzsrc-for:0806
    4 schema:author Nd4a621a912d74e6a94669f38cd2231c9
    5 schema:citation sg:pub.10.1007/978-3-540-30471-5_2
    6 sg:pub.10.1186/s13638-017-0856-9
    7 schema:datePublished 2018-07-31
    8 schema:datePublishedReg 2018-07-31
    9 schema:description With the increasing demand for over the top media content, understanding user perception and Quality of Experience (QoE) estimation have become a major business necessity for service providers. Online video broadcasting is a multifaceted procedure and calculation of performance for the components that build up a streaming platform requires an overall understanding of the Content Delivery Network as a service (CDNaaS) concept. Therefore, to evaluate delivery quality and predicting user perception while considering NFV (Network Function Virtualization) and limited cloud resources, a relationship between these concepts is required. In this paper, a generalized mathematical model to calculate the success rate of different tiers of online video delivery system is presented. Furthermore, an algorithm that indicates the correct moment to switch between CDNs is provided to improve throughput efficiency while maintaining QoE and keeping the cloud hosting costs as lowest possible.
    10 schema:genre article
    11 schema:inLanguage en
    12 schema:isAccessibleForFree true
    13 schema:isPartOf Na4c5b791af9f4ccc9440b06a3d33256e
    14 Nd6a6bbe51fd14acd8af0a242f10dcb57
    15 sg:journal.1044869
    16 schema:keywords CDN
    17 CDNaaS deployment
    18 Content Delivery Networks
    19 NFV
    20 Online video broadcasting
    21 QoE
    22 algorithm
    23 broadcasting
    24 business necessity
    25 calculation of performance
    26 calculations
    27 cloud
    28 cloud resources
    29 components
    30 concept
    31 content
    32 correct moment
    33 cost
    34 delivery networks
    35 delivery quality
    36 delivery system
    37 demand
    38 deployment
    39 different tiers
    40 efficiency
    41 estimation
    42 experience estimation
    43 generalized mathematical model
    44 limited cloud resources
    45 major business necessity
    46 mathematical model
    47 media content
    48 model
    49 modelling
    50 moment
    51 multifaceted procedure
    52 necessity
    53 network
    54 online video delivery system
    55 overall understanding
    56 paper
    57 perception
    58 performance
    59 platform
    60 procedure
    61 providers
    62 quality
    63 rate
    64 relationship
    65 resources
    66 service concept
    67 service providers
    68 success rate
    69 system
    70 throughput efficiency
    71 tier
    72 top media content
    73 understanding
    74 user perceptions
    75 video broadcasting
    76 video delivery system
    77 schema:name On the modelling of CDNaaS deployment
    78 schema:pagination 6805-6825
    79 schema:productId N277ffe2aed084560832dab8cd763943c
    80 N607b9b2f283a409cadc6bdafa1b4f506
    81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105927342
    82 https://doi.org/10.1007/s11042-018-6441-3
    83 schema:sdDatePublished 2022-01-01T18:47
    84 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    85 schema:sdPublisher Nab675c872f5a428e9094a3f8ac249b73
    86 schema:url https://doi.org/10.1007/s11042-018-6441-3
    87 sgo:license sg:explorer/license/
    88 sgo:sdDataset articles
    89 rdf:type schema:ScholarlyArticle
    90 N04a5c3f3b39640cd89702a42b60c9ae6 rdf:first sg:person.07364535051.65
    91 rdf:rest rdf:nil
    92 N277ffe2aed084560832dab8cd763943c schema:name doi
    93 schema:value 10.1007/s11042-018-6441-3
    94 rdf:type schema:PropertyValue
    95 N5d2ddc2a23fa4c5f8204aba8038f47a5 rdf:first sg:person.013724335035.39
    96 rdf:rest N04a5c3f3b39640cd89702a42b60c9ae6
    97 N607b9b2f283a409cadc6bdafa1b4f506 schema:name dimensions_id
    98 schema:value pub.1105927342
    99 rdf:type schema:PropertyValue
    100 Na4c5b791af9f4ccc9440b06a3d33256e schema:volumeNumber 78
    101 rdf:type schema:PublicationVolume
    102 Nab675c872f5a428e9094a3f8ac249b73 schema:name Springer Nature - SN SciGraph project
    103 rdf:type schema:Organization
    104 Nd4a621a912d74e6a94669f38cd2231c9 rdf:first sg:person.013012572630.51
    105 rdf:rest N5d2ddc2a23fa4c5f8204aba8038f47a5
    106 Nd6a6bbe51fd14acd8af0a242f10dcb57 schema:issueNumber 6
    107 rdf:type schema:PublicationIssue
    108 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    109 schema:name Information and Computing Sciences
    110 rdf:type schema:DefinedTerm
    111 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    112 schema:name Artificial Intelligence and Image Processing
    113 rdf:type schema:DefinedTerm
    114 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
    115 schema:name Information Systems
    116 rdf:type schema:DefinedTerm
    117 sg:journal.1044869 schema:issn 1380-7501
    118 1573-7721
    119 schema:name Multimedia Tools and Applications
    120 schema:publisher Springer Nature
    121 rdf:type schema:Periodical
    122 sg:person.013012572630.51 schema:affiliation grid-institutes:grid.4756.0
    123 schema:familyName Bulkan
    124 schema:givenName Utku
    125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013012572630.51
    126 rdf:type schema:Person
    127 sg:person.013724335035.39 schema:affiliation grid-institutes:grid.4756.0
    128 schema:familyName Dagiuklas
    129 schema:givenName Tasos
    130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013724335035.39
    131 rdf:type schema:Person
    132 sg:person.07364535051.65 schema:affiliation grid-institutes:grid.4756.0
    133 schema:familyName Iqbal
    134 schema:givenName Muddesar
    135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07364535051.65
    136 rdf:type schema:Person
    137 sg:pub.10.1007/978-3-540-30471-5_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036475457
    138 https://doi.org/10.1007/978-3-540-30471-5_2
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1186/s13638-017-0856-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084814167
    141 https://doi.org/10.1186/s13638-017-0856-9
    142 rdf:type schema:CreativeWork
    143 grid-institutes:grid.4756.0 schema:alternateName SuITE Research Group, Division of Computer Science, London South Bank University, 103 Borough Road, SE1 0AA, London, UK
    144 schema:name SuITE Research Group, Division of Computer Science, London South Bank University, 103 Borough Road, SE1 0AA, London, UK
    145 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...