Web3D-based automatic furniture layout system using recursive case-based reasoning and floor field View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02

AUTHORS

Peihua Song, Youyi Zheng, Jinyuan Jia, Yan Gao

ABSTRACT

Furniture layout in a virtual 3D scene is an important and challenging task, as it is time-consuming and requires experience. To address this issue, we propose automatic furniture layout algorithms to help users to rapidly generate reasonable layout results. Specifically, our algorithms divide a scene layout into four layout modes, namely, coupled mode, enclosed mode, matrix mode, and circular mode. Then each model is solved independently. The coupled mode is solved using recursive techniques and case-based reasoning. The enclosed mode is solved using floor field. The distance and angle among the furniture are determined by ergonomics guidelines. Finally, the layout results of the scene can be obtained by combining the solutions from these layout modes, and an evaluation method for the layout results based on user feedback is proposed. For a room with non-rectangular floor, our algorithms can also handle this case using shape standardization techniques. Based on our algorithms, an online 3D furniture layout system is developed. Many experiments are conducted on the system with the real interior design cases, and we compared our algorithms with other popular algorithms. The experimental results show that our algorithms are efficient and can meet the real response requirements of online furniture layout. More... »

PAGES

5051-5079

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11042-018-6334-5

DOI

http://dx.doi.org/10.1007/s11042-018-6334-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105319636


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tongji University", 
          "id": "https://www.grid.ac/institutes/grid.24516.34", 
          "name": [
            "School of Software Engineering, Tongji University, 201804, Shanghai, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Song", 
        "givenName": "Peihua", 
        "id": "sg:person.014042526602.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014042526602.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Zhejiang University", 
          "id": "https://www.grid.ac/institutes/grid.13402.34", 
          "name": [
            "State Key Lab of CAD & CG, Zhejiang University, 310058, Hangzhou, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zheng", 
        "givenName": "Youyi", 
        "id": "sg:person.011112606174.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011112606174.21"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tongji University", 
          "id": "https://www.grid.ac/institutes/grid.24516.34", 
          "name": [
            "School of Software Engineering, Tongji University, 201804, Shanghai, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jia", 
        "givenName": "Jinyuan", 
        "id": "sg:person.012204254726.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012204254726.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Clarkson University", 
          "id": "https://www.grid.ac/institutes/grid.254280.9", 
          "name": [
            "Electrical and Computer Engineering, Clarkson University, 13676, Potsdam, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gao", 
        "givenName": "Yan", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11042-013-1516-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001877471", 
          "https://doi.org/10.1007/s11042-013-1516-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2766898", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008856189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2461912.2461968", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016167666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1185657.1185716", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016435350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00155578", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016957726", 
          "https://doi.org/10.1007/bf00155578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00155578", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016957726", 
          "https://doi.org/10.1007/bf00155578"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11042-016-4256-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019831799", 
          "https://doi.org/10.1007/s11042-016-4256-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11042-016-4256-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019831799", 
          "https://doi.org/10.1007/s11042-016-4256-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cag.2014.09.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030666071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11042-015-2481-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043415705", 
          "https://doi.org/10.1007/s11042-015-2481-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11042-014-2041-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043951393", 
          "https://doi.org/10.1007/s11042-014-2041-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/199404.199427", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046275393"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-8659.2009.01351.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046936418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-8659.2009.01351.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046936418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2629573", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053380495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2366145.2366154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053492172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.78.021131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060737736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.78.021131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060737736"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1141911.1141931", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063151955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2010324.1964981", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063159744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2010324.1964982", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063159745"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11042-017-4457-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084028903", 
          "https://doi.org/10.1007/s11042-017-4457-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11042-017-4457-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084028903", 
          "https://doi.org/10.1007/s11042-017-4457-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0129183117500590", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084226725"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cisis.2013.130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095735577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cisis.2013.130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095735577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1278780.1278822", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096186822"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02", 
    "datePublishedReg": "2019-02-01", 
    "description": "Furniture layout in a virtual 3D scene is an important and challenging task, as it is time-consuming and requires experience. To address this issue, we propose automatic furniture layout algorithms to help users to rapidly generate reasonable layout results. Specifically, our algorithms divide a scene layout into four layout modes, namely, coupled mode, enclosed mode, matrix mode, and circular mode. Then each model is solved independently. The coupled mode is solved using recursive techniques and case-based reasoning. The enclosed mode is solved using floor field. The distance and angle among the furniture are determined by ergonomics guidelines. Finally, the layout results of the scene can be obtained by combining the solutions from these layout modes, and an evaluation method for the layout results based on user feedback is proposed. For a room with non-rectangular floor, our algorithms can also handle this case using shape standardization techniques. Based on our algorithms, an online 3D furniture layout system is developed. Many experiments are conducted on the system with the real interior design cases, and we compared our algorithms with other popular algorithms. The experimental results show that our algorithms are efficient and can meet the real response requirements of online furniture layout.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11042-018-6334-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1044869", 
        "issn": [
          "1380-7501", 
          "1573-7721"
        ], 
        "name": "Multimedia Tools and Applications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "78"
      }
    ], 
    "name": "Web3D-based automatic furniture layout system using recursive case-based reasoning and floor field", 
    "pagination": "5051-5079", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6c11ce4ae85ccf2d795c647cc777f1f5fded67d7ccf354b421a55e32adc46bc7"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11042-018-6334-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105319636"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11042-018-6334-5", 
      "https://app.dimensions.ai/details/publication/pub.1105319636"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88221_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11042-018-6334-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11042-018-6334-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11042-018-6334-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11042-018-6334-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11042-018-6334-5'


 

This table displays all metadata directly associated to this object as RDF triples.

156 TRIPLES      21 PREDICATES      48 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11042-018-6334-5 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N58a861fc9c2044e79b6c68530e2c2800
4 schema:citation sg:pub.10.1007/bf00155578
5 sg:pub.10.1007/s11042-013-1516-7
6 sg:pub.10.1007/s11042-014-2041-z
7 sg:pub.10.1007/s11042-015-2481-0
8 sg:pub.10.1007/s11042-016-4256-7
9 sg:pub.10.1007/s11042-017-4457-8
10 https://doi.org/10.1016/j.cag.2014.09.032
11 https://doi.org/10.1103/physreve.78.021131
12 https://doi.org/10.1109/cisis.2013.130
13 https://doi.org/10.1111/j.1467-8659.2009.01351.x
14 https://doi.org/10.1142/s0129183117500590
15 https://doi.org/10.1145/1141911.1141931
16 https://doi.org/10.1145/1185657.1185716
17 https://doi.org/10.1145/1278780.1278822
18 https://doi.org/10.1145/199404.199427
19 https://doi.org/10.1145/2010324.1964981
20 https://doi.org/10.1145/2010324.1964982
21 https://doi.org/10.1145/2366145.2366154
22 https://doi.org/10.1145/2461912.2461968
23 https://doi.org/10.1145/2629573
24 https://doi.org/10.1145/2766898
25 schema:datePublished 2019-02
26 schema:datePublishedReg 2019-02-01
27 schema:description Furniture layout in a virtual 3D scene is an important and challenging task, as it is time-consuming and requires experience. To address this issue, we propose automatic furniture layout algorithms to help users to rapidly generate reasonable layout results. Specifically, our algorithms divide a scene layout into four layout modes, namely, coupled mode, enclosed mode, matrix mode, and circular mode. Then each model is solved independently. The coupled mode is solved using recursive techniques and case-based reasoning. The enclosed mode is solved using floor field. The distance and angle among the furniture are determined by ergonomics guidelines. Finally, the layout results of the scene can be obtained by combining the solutions from these layout modes, and an evaluation method for the layout results based on user feedback is proposed. For a room with non-rectangular floor, our algorithms can also handle this case using shape standardization techniques. Based on our algorithms, an online 3D furniture layout system is developed. Many experiments are conducted on the system with the real interior design cases, and we compared our algorithms with other popular algorithms. The experimental results show that our algorithms are efficient and can meet the real response requirements of online furniture layout.
28 schema:genre research_article
29 schema:inLanguage en
30 schema:isAccessibleForFree false
31 schema:isPartOf N221eb734fac74e8f91a471882dfc3391
32 N5326d7b3ede94fbdbc320612cc96423e
33 sg:journal.1044869
34 schema:name Web3D-based automatic furniture layout system using recursive case-based reasoning and floor field
35 schema:pagination 5051-5079
36 schema:productId N4e8866b6f7c24be4bff3f80f7c3340f2
37 N517a1c9de1eb43caab0eb6ca5a197f37
38 Ne069070853e2412696229167a0fd9264
39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105319636
40 https://doi.org/10.1007/s11042-018-6334-5
41 schema:sdDatePublished 2019-04-11T13:07
42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
43 schema:sdPublisher N17aa1549502a42d0999befef4cabfe1a
44 schema:url https://link.springer.com/10.1007%2Fs11042-018-6334-5
45 sgo:license sg:explorer/license/
46 sgo:sdDataset articles
47 rdf:type schema:ScholarlyArticle
48 N17aa1549502a42d0999befef4cabfe1a schema:name Springer Nature - SN SciGraph project
49 rdf:type schema:Organization
50 N221eb734fac74e8f91a471882dfc3391 schema:issueNumber 4
51 rdf:type schema:PublicationIssue
52 N4e8866b6f7c24be4bff3f80f7c3340f2 schema:name doi
53 schema:value 10.1007/s11042-018-6334-5
54 rdf:type schema:PropertyValue
55 N517a1c9de1eb43caab0eb6ca5a197f37 schema:name dimensions_id
56 schema:value pub.1105319636
57 rdf:type schema:PropertyValue
58 N5326d7b3ede94fbdbc320612cc96423e schema:volumeNumber 78
59 rdf:type schema:PublicationVolume
60 N57797cca860d4783944d6a19678a32bd rdf:first Nbfc897fead22421ca566362515461fc3
61 rdf:rest rdf:nil
62 N58a861fc9c2044e79b6c68530e2c2800 rdf:first sg:person.014042526602.09
63 rdf:rest N6b8778ac911e4835be3313f9318781e1
64 N60c89692678140658ac0928bcee9d77d rdf:first sg:person.012204254726.04
65 rdf:rest N57797cca860d4783944d6a19678a32bd
66 N6b8778ac911e4835be3313f9318781e1 rdf:first sg:person.011112606174.21
67 rdf:rest N60c89692678140658ac0928bcee9d77d
68 Nbfc897fead22421ca566362515461fc3 schema:affiliation https://www.grid.ac/institutes/grid.254280.9
69 schema:familyName Gao
70 schema:givenName Yan
71 rdf:type schema:Person
72 Ne069070853e2412696229167a0fd9264 schema:name readcube_id
73 schema:value 6c11ce4ae85ccf2d795c647cc777f1f5fded67d7ccf354b421a55e32adc46bc7
74 rdf:type schema:PropertyValue
75 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
76 schema:name Information and Computing Sciences
77 rdf:type schema:DefinedTerm
78 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
79 schema:name Artificial Intelligence and Image Processing
80 rdf:type schema:DefinedTerm
81 sg:journal.1044869 schema:issn 1380-7501
82 1573-7721
83 schema:name Multimedia Tools and Applications
84 rdf:type schema:Periodical
85 sg:person.011112606174.21 schema:affiliation https://www.grid.ac/institutes/grid.13402.34
86 schema:familyName Zheng
87 schema:givenName Youyi
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011112606174.21
89 rdf:type schema:Person
90 sg:person.012204254726.04 schema:affiliation https://www.grid.ac/institutes/grid.24516.34
91 schema:familyName Jia
92 schema:givenName Jinyuan
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012204254726.04
94 rdf:type schema:Person
95 sg:person.014042526602.09 schema:affiliation https://www.grid.ac/institutes/grid.24516.34
96 schema:familyName Song
97 schema:givenName Peihua
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014042526602.09
99 rdf:type schema:Person
100 sg:pub.10.1007/bf00155578 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016957726
101 https://doi.org/10.1007/bf00155578
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/s11042-013-1516-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001877471
104 https://doi.org/10.1007/s11042-013-1516-7
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/s11042-014-2041-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1043951393
107 https://doi.org/10.1007/s11042-014-2041-z
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/s11042-015-2481-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043415705
110 https://doi.org/10.1007/s11042-015-2481-0
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/s11042-016-4256-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019831799
113 https://doi.org/10.1007/s11042-016-4256-7
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/s11042-017-4457-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084028903
116 https://doi.org/10.1007/s11042-017-4457-8
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.cag.2014.09.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030666071
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1103/physreve.78.021131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060737736
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1109/cisis.2013.130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095735577
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1111/j.1467-8659.2009.01351.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1046936418
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1142/s0129183117500590 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084226725
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1145/1141911.1141931 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063151955
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1145/1185657.1185716 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016435350
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1145/1278780.1278822 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096186822
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1145/199404.199427 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046275393
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1145/2010324.1964981 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063159744
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1145/2010324.1964982 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063159745
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1145/2366145.2366154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053492172
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1145/2461912.2461968 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016167666
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1145/2629573 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053380495
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1145/2766898 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008856189
147 rdf:type schema:CreativeWork
148 https://www.grid.ac/institutes/grid.13402.34 schema:alternateName Zhejiang University
149 schema:name State Key Lab of CAD & CG, Zhejiang University, 310058, Hangzhou, People’s Republic of China
150 rdf:type schema:Organization
151 https://www.grid.ac/institutes/grid.24516.34 schema:alternateName Tongji University
152 schema:name School of Software Engineering, Tongji University, 201804, Shanghai, People’s Republic of China
153 rdf:type schema:Organization
154 https://www.grid.ac/institutes/grid.254280.9 schema:alternateName Clarkson University
155 schema:name Electrical and Computer Engineering, Clarkson University, 13676, Potsdam, NY, USA
156 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...