Adaptive and dynamic multi-grouping scheme for absolute moment block truncation coding View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-05-01

AUTHORS

Zhaoyang Xiang, Yu-Chen Hu, Heng Yao, Chuan Qin

ABSTRACT

Image compression technique is widely used in multimedia signal processing. As a conventional lossy compression technique, block truncation coding (BTC) deserves further improvements to enhance its performance of compression. The improvements of BTC mainly focus on: 1) enhancing the quality of reconstructed image and 2) decreasing the bit rate. In this paper, an adaptive and dynamic multi-grouping scheme is proposed for the absolute moment block truncation coding (AMBTC), which is mainly based on an optimized grouping mechanism with the adaptive threshold setting according to the complexity of image blocks. Besides, the values of the reconstruction levels are replaced by their compressed difference values in order to decrease the bit rate. Experimental results demonstrate that the proposed scheme can enhance the compression performance of AMBTC effectively. More... »

PAGES

1-15

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11042-018-6030-5

DOI

http://dx.doi.org/10.1007/s11042-018-6030-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1103740978


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Shanghai for Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.267139.8", 
          "name": [
            "School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, No. 516 Jungong Road, 200093, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xiang", 
        "givenName": "Zhaoyang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Providence University", 
          "id": "https://www.grid.ac/institutes/grid.412550.7", 
          "name": [
            "Department of Computer Science and Information Management, Providence University, 43301, Taichung, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hu", 
        "givenName": "Yu-Chen", 
        "id": "sg:person.012113441135.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012113441135.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Shanghai for Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.267139.8", 
          "name": [
            "School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, No. 516 Jungong Road, 200093, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yao", 
        "givenName": "Heng", 
        "id": "sg:person.010403056512.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010403056512.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Shanghai for Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.267139.8", 
          "name": [
            "School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, No. 516 Jungong Road, 200093, Shanghai, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qin", 
        "givenName": "Chuan", 
        "id": "sg:person.012401567232.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012401567232.50"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11042-015-3218-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003091461", 
          "https://doi.org/10.1007/s11042-015-3218-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11042-015-3218-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003091461", 
          "https://doi.org/10.1007/s11042-015-3218-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0031-3203(94)90123-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008008225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0031-3203(94)90123-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008008225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patcog.2004.02.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017681986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2016.04.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020422503"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-8655(00)00075-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021182398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11432-015-5367-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025423971", 
          "https://doi.org/10.1007/s11432-015-5367-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1179/174313108x281335", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039083112"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/1.1576776", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040488731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/1.1785158", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042585222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/comjnl/37.4.308", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043943787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sigpro.2016.05.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044765286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/el:19961267", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056784359"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1049/el:20030884", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056793732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/76.276177", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061221868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcom.1979.1094560", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061552693"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcom.1984.1095973", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061553793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2013.2260760", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061643572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sigpro.2017.03.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084535026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ins.2017.09.060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091897485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/wosspa.2011.5931432", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093527431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iih-msp.2014.40", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093598687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icpair.2011.5976907", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093711079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/imac4s.2013.6526440", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093785581"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/bigdatasecurity.2017.16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094560211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/fgcns.2008.33", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095078651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iih-msp.2014.128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095166793"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/adcom.2006.4289913", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095231315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/3dtv.2012.6365476", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095490726"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.sigpro.2018.01.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100232659"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mmul.2018.112142509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100431800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mmul.2018.112142509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100431800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mmul.2018.112142509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100431800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mmul.2018.112142509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100431800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mmul.2018.112142509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100431800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mmul.2018.112142509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100431800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcsvt.2018.2799243", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100689000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcsvt.2018.2799243", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100689000"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcsvt.2018.2799243", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1100689000"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-05-01", 
    "datePublishedReg": "2018-05-01", 
    "description": "Image compression technique is widely used in multimedia signal processing. As a conventional lossy compression technique, block truncation coding (BTC) deserves further improvements to enhance its performance of compression. The improvements of BTC mainly focus on: 1) enhancing the quality of reconstructed image and 2) decreasing the bit rate. In this paper, an adaptive and dynamic multi-grouping scheme is proposed for the absolute moment block truncation coding (AMBTC), which is mainly based on an optimized grouping mechanism with the adaptive threshold setting according to the complexity of image blocks. Besides, the values of the reconstruction levels are replaced by their compressed difference values in order to decrease the bit rate. Experimental results demonstrate that the proposed scheme can enhance the compression performance of AMBTC effectively.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11042-018-6030-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1044869", 
        "issn": [
          "1380-7501", 
          "1573-7721"
        ], 
        "name": "Multimedia Tools and Applications", 
        "type": "Periodical"
      }
    ], 
    "name": "Adaptive and dynamic multi-grouping scheme for absolute moment block truncation coding", 
    "pagination": "1-15", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4d285f9e10a246e1e9004b4fcfb363d32f9eeab19135b168221d2c39c73415cc"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11042-018-6030-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1103740978"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11042-018-6030-5", 
      "https://app.dimensions.ai/details/publication/pub.1103740978"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:51", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89789_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11042-018-6030-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11042-018-6030-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11042-018-6030-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11042-018-6030-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11042-018-6030-5'


 

This table displays all metadata directly associated to this object as RDF triples.

173 TRIPLES      21 PREDICATES      55 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11042-018-6030-5 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nd9e23ffb31f84cf98b0eb2d98c42a59b
4 schema:citation sg:pub.10.1007/s11042-015-3218-9
5 sg:pub.10.1007/s11432-015-5367-x
6 https://doi.org/10.1016/0031-3203(94)90123-6
7 https://doi.org/10.1016/j.ins.2016.04.036
8 https://doi.org/10.1016/j.ins.2017.09.060
9 https://doi.org/10.1016/j.patcog.2004.02.008
10 https://doi.org/10.1016/j.sigpro.2016.05.032
11 https://doi.org/10.1016/j.sigpro.2017.03.033
12 https://doi.org/10.1016/j.sigpro.2018.01.011
13 https://doi.org/10.1016/s0167-8655(00)00075-1
14 https://doi.org/10.1049/el:19961267
15 https://doi.org/10.1049/el:20030884
16 https://doi.org/10.1093/comjnl/37.4.308
17 https://doi.org/10.1109/3dtv.2012.6365476
18 https://doi.org/10.1109/76.276177
19 https://doi.org/10.1109/adcom.2006.4289913
20 https://doi.org/10.1109/bigdatasecurity.2017.16
21 https://doi.org/10.1109/fgcns.2008.33
22 https://doi.org/10.1109/icpair.2011.5976907
23 https://doi.org/10.1109/iih-msp.2014.128
24 https://doi.org/10.1109/iih-msp.2014.40
25 https://doi.org/10.1109/imac4s.2013.6526440
26 https://doi.org/10.1109/mmul.2018.112142509
27 https://doi.org/10.1109/tcom.1979.1094560
28 https://doi.org/10.1109/tcom.1984.1095973
29 https://doi.org/10.1109/tcsvt.2018.2799243
30 https://doi.org/10.1109/tip.2013.2260760
31 https://doi.org/10.1109/wosspa.2011.5931432
32 https://doi.org/10.1117/1.1576776
33 https://doi.org/10.1117/1.1785158
34 https://doi.org/10.1179/174313108x281335
35 schema:datePublished 2018-05-01
36 schema:datePublishedReg 2018-05-01
37 schema:description Image compression technique is widely used in multimedia signal processing. As a conventional lossy compression technique, block truncation coding (BTC) deserves further improvements to enhance its performance of compression. The improvements of BTC mainly focus on: 1) enhancing the quality of reconstructed image and 2) decreasing the bit rate. In this paper, an adaptive and dynamic multi-grouping scheme is proposed for the absolute moment block truncation coding (AMBTC), which is mainly based on an optimized grouping mechanism with the adaptive threshold setting according to the complexity of image blocks. Besides, the values of the reconstruction levels are replaced by their compressed difference values in order to decrease the bit rate. Experimental results demonstrate that the proposed scheme can enhance the compression performance of AMBTC effectively.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree false
41 schema:isPartOf sg:journal.1044869
42 schema:name Adaptive and dynamic multi-grouping scheme for absolute moment block truncation coding
43 schema:pagination 1-15
44 schema:productId N21a8655737ee4675bc0fca2c4bd4fd17
45 N79e09153488c46dabeec8c2b14932032
46 Nf2327a0ed325477ea1a2556a4bb97281
47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103740978
48 https://doi.org/10.1007/s11042-018-6030-5
49 schema:sdDatePublished 2019-04-11T09:51
50 schema:sdLicense https://scigraph.springernature.com/explorer/license/
51 schema:sdPublisher Ne02a638340704c3c932b0d45e844b9c5
52 schema:url https://link.springer.com/10.1007%2Fs11042-018-6030-5
53 sgo:license sg:explorer/license/
54 sgo:sdDataset articles
55 rdf:type schema:ScholarlyArticle
56 N21a8655737ee4675bc0fca2c4bd4fd17 schema:name readcube_id
57 schema:value 4d285f9e10a246e1e9004b4fcfb363d32f9eeab19135b168221d2c39c73415cc
58 rdf:type schema:PropertyValue
59 N4ee07c3c493f4566ab0c205276256475 rdf:first sg:person.010403056512.37
60 rdf:rest N853631fd75ce4afd84a3106c8861d77b
61 N79e09153488c46dabeec8c2b14932032 schema:name doi
62 schema:value 10.1007/s11042-018-6030-5
63 rdf:type schema:PropertyValue
64 N853631fd75ce4afd84a3106c8861d77b rdf:first sg:person.012401567232.50
65 rdf:rest rdf:nil
66 N9bc4d339a19e4dc6a364a7f987d40555 rdf:first sg:person.012113441135.19
67 rdf:rest N4ee07c3c493f4566ab0c205276256475
68 Nd0a721a59d4443e49ad069f362c41e15 schema:affiliation https://www.grid.ac/institutes/grid.267139.8
69 schema:familyName Xiang
70 schema:givenName Zhaoyang
71 rdf:type schema:Person
72 Nd9e23ffb31f84cf98b0eb2d98c42a59b rdf:first Nd0a721a59d4443e49ad069f362c41e15
73 rdf:rest N9bc4d339a19e4dc6a364a7f987d40555
74 Ne02a638340704c3c932b0d45e844b9c5 schema:name Springer Nature - SN SciGraph project
75 rdf:type schema:Organization
76 Nf2327a0ed325477ea1a2556a4bb97281 schema:name dimensions_id
77 schema:value pub.1103740978
78 rdf:type schema:PropertyValue
79 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
80 schema:name Information and Computing Sciences
81 rdf:type schema:DefinedTerm
82 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
83 schema:name Artificial Intelligence and Image Processing
84 rdf:type schema:DefinedTerm
85 sg:journal.1044869 schema:issn 1380-7501
86 1573-7721
87 schema:name Multimedia Tools and Applications
88 rdf:type schema:Periodical
89 sg:person.010403056512.37 schema:affiliation https://www.grid.ac/institutes/grid.267139.8
90 schema:familyName Yao
91 schema:givenName Heng
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010403056512.37
93 rdf:type schema:Person
94 sg:person.012113441135.19 schema:affiliation https://www.grid.ac/institutes/grid.412550.7
95 schema:familyName Hu
96 schema:givenName Yu-Chen
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012113441135.19
98 rdf:type schema:Person
99 sg:person.012401567232.50 schema:affiliation https://www.grid.ac/institutes/grid.267139.8
100 schema:familyName Qin
101 schema:givenName Chuan
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012401567232.50
103 rdf:type schema:Person
104 sg:pub.10.1007/s11042-015-3218-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003091461
105 https://doi.org/10.1007/s11042-015-3218-9
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/s11432-015-5367-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1025423971
108 https://doi.org/10.1007/s11432-015-5367-x
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/0031-3203(94)90123-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008008225
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/j.ins.2016.04.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020422503
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.ins.2017.09.060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091897485
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.patcog.2004.02.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017681986
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.sigpro.2016.05.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044765286
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.sigpro.2017.03.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084535026
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.sigpro.2018.01.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100232659
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/s0167-8655(00)00075-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021182398
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1049/el:19961267 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056784359
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1049/el:20030884 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056793732
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1093/comjnl/37.4.308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043943787
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1109/3dtv.2012.6365476 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095490726
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1109/76.276177 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061221868
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1109/adcom.2006.4289913 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095231315
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1109/bigdatasecurity.2017.16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094560211
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1109/fgcns.2008.33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095078651
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1109/icpair.2011.5976907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093711079
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1109/iih-msp.2014.128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095166793
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1109/iih-msp.2014.40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093598687
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1109/imac4s.2013.6526440 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093785581
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1109/mmul.2018.112142509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100431800
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1109/tcom.1979.1094560 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061552693
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1109/tcom.1984.1095973 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061553793
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1109/tcsvt.2018.2799243 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100689000
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1109/tip.2013.2260760 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061643572
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1109/wosspa.2011.5931432 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093527431
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1117/1.1576776 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040488731
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1117/1.1785158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042585222
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1179/174313108x281335 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039083112
167 rdf:type schema:CreativeWork
168 https://www.grid.ac/institutes/grid.267139.8 schema:alternateName University of Shanghai for Science and Technology
169 schema:name School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, No. 516 Jungong Road, 200093, Shanghai, China
170 rdf:type schema:Organization
171 https://www.grid.ac/institutes/grid.412550.7 schema:alternateName Providence University
172 schema:name Department of Computer Science and Information Management, Providence University, 43301, Taichung, Taiwan
173 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...