Random grid-based threshold visual secret sharing with improved visual quality and lossless recovery ability View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-12-16

AUTHORS

Xin Liu, Shen Wang, Xuehu Yan, Weizhe Zhang

ABSTRACT

Visual secret sharing (VSS) by random grids (RG) has gained much attention since it avoids the pixel expansion problem as well as requires no basic matrixes design. However, most of the previous RG-based threshold VSS still suffer from low visual quality or worse reconstructed secrets when more shadows are stacked. In this paper, a new RG-based threshold VSS with improved visual quality and lossless recovery ability is proposed. The random bits are utilized to improve the visual quality as well as to decrease the darkness of the reconstructed secret image. And the secret image can be losslessly recovered in the proposed scheme if the computational device is available. Simulation results and analyzes show the effectiveness of the proposed scheme. In addition, this paper gave the preliminary definition and evaluation of progressive secret sharing (PSS) based on mathematical differential and expectations. More... »

PAGES

20673-20696

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11042-017-5482-3

DOI

http://dx.doi.org/10.1007/s11042-017-5482-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1099690540


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Modern Educational Technology Center, Harbin University of Science and Technology, 150080, Harbin, China", 
          "id": "http://www.grid.ac/institutes/grid.411994.0", 
          "name": [
            "School of Computer Science and Technology, Harbin Institute of Technology, 150080, Harbin, China", 
            "Modern Educational Technology Center, Harbin University of Science and Technology, 150080, Harbin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Xin", 
        "id": "sg:person.014301003402.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014301003402.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Computer Science and Technology, Harbin Institute of Technology, 150080, Harbin, China", 
          "id": "http://www.grid.ac/institutes/grid.19373.3f", 
          "name": [
            "School of Computer Science and Technology, Harbin Institute of Technology, 150080, Harbin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Shen", 
        "id": "sg:person.013117766471.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013117766471.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Electronic Engineering Institute, 230037, Hefei, China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Electronic Engineering Institute, 230037, Hefei, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yan", 
        "givenName": "Xuehu", 
        "id": "sg:person.010467364517.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010467364517.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Computer Science and Technology, Harbin Institute of Technology, 150080, Harbin, China", 
          "id": "http://www.grid.ac/institutes/grid.19373.3f", 
          "name": [
            "School of Computer Science and Technology, Harbin Institute of Technology, 150080, Harbin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Weizhe", 
        "id": "sg:person.0747621071.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0747621071.51"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11554-017-0678-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084031870", 
          "https://doi.org/10.1007/s11554-017-0678-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11042-015-3188-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041706779", 
          "https://doi.org/10.1007/s11042-015-3188-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11042-015-2779-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052643056", 
          "https://doi.org/10.1007/s11042-015-2779-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11042-013-1784-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021413130", 
          "https://doi.org/10.1007/s11042-013-1784-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11554-015-0540-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022432477", 
          "https://doi.org/10.1007/s11554-015-0540-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11042-014-2080-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015360804", 
          "https://doi.org/10.1007/s11042-014-2080-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11554-016-0621-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009229081", 
          "https://doi.org/10.1007/s11554-016-0621-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11554-016-0644-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016948860", 
          "https://doi.org/10.1007/s11554-016-0644-5"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-12-16", 
    "datePublishedReg": "2017-12-16", 
    "description": "Visual secret sharing (VSS) by random grids (RG) has gained much attention since it avoids the pixel expansion problem as well as requires no basic matrixes design. However, most of the previous RG-based threshold VSS still suffer from low visual quality or worse reconstructed secrets when more shadows are stacked. In this paper, a new RG-based threshold VSS with improved visual quality and lossless recovery ability is proposed. The random bits are utilized to improve the visual quality as well as to decrease the darkness of the reconstructed secret image. And the secret image can be losslessly recovered in the proposed scheme if the computational device is available. Simulation results and analyzes show the effectiveness of the proposed scheme. In addition, this paper gave the preliminary definition and evaluation of progressive secret sharing (PSS) based on mathematical differential and expectations.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11042-017-5482-3", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7203143", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8297278", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8298895", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8297657", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8306277", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8292720", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1044869", 
        "issn": [
          "1380-7501", 
          "1573-7721"
        ], 
        "name": "Multimedia Tools and Applications", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "16", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "77"
      }
    ], 
    "keywords": [
      "visual secret sharing", 
      "threshold visual secret sharing", 
      "progressive secret sharing", 
      "random grids", 
      "secret sharing", 
      "improved visual quality", 
      "visual quality", 
      "secret image", 
      "reconstructed secret image", 
      "pixel expansion problem", 
      "new RG", 
      "low visual quality", 
      "computational devices", 
      "more shadows", 
      "sharing", 
      "random bits", 
      "simulation results", 
      "images", 
      "expansion problem", 
      "mathematical differentials", 
      "scheme", 
      "matrix design", 
      "bits", 
      "quality", 
      "secrets", 
      "recovery ability", 
      "preliminary definition", 
      "grid", 
      "effectiveness", 
      "devices", 
      "design", 
      "shadow", 
      "definition", 
      "ability", 
      "analyzes", 
      "evaluation", 
      "attention", 
      "results", 
      "expectations", 
      "addition", 
      "problem", 
      "differential", 
      "darkness", 
      "paper"
    ], 
    "name": "Random grid-based threshold visual secret sharing with improved visual quality and lossless recovery ability", 
    "pagination": "20673-20696", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1099690540"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11042-017-5482-3"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11042-017-5482-3", 
      "https://app.dimensions.ai/details/publication/pub.1099690540"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_744.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11042-017-5482-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11042-017-5482-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11042-017-5482-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11042-017-5482-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11042-017-5482-3'


 

This table displays all metadata directly associated to this object as RDF triples.

173 TRIPLES      21 PREDICATES      76 URIs      60 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11042-017-5482-3 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Ncee7320c554f479eaba3c6ccdfc8efec
4 schema:citation sg:pub.10.1007/s11042-013-1784-2
5 sg:pub.10.1007/s11042-014-2080-5
6 sg:pub.10.1007/s11042-015-2779-y
7 sg:pub.10.1007/s11042-015-3188-y
8 sg:pub.10.1007/s11554-015-0540-4
9 sg:pub.10.1007/s11554-016-0621-z
10 sg:pub.10.1007/s11554-016-0644-5
11 sg:pub.10.1007/s11554-017-0678-3
12 schema:datePublished 2017-12-16
13 schema:datePublishedReg 2017-12-16
14 schema:description Visual secret sharing (VSS) by random grids (RG) has gained much attention since it avoids the pixel expansion problem as well as requires no basic matrixes design. However, most of the previous RG-based threshold VSS still suffer from low visual quality or worse reconstructed secrets when more shadows are stacked. In this paper, a new RG-based threshold VSS with improved visual quality and lossless recovery ability is proposed. The random bits are utilized to improve the visual quality as well as to decrease the darkness of the reconstructed secret image. And the secret image can be losslessly recovered in the proposed scheme if the computational device is available. Simulation results and analyzes show the effectiveness of the proposed scheme. In addition, this paper gave the preliminary definition and evaluation of progressive secret sharing (PSS) based on mathematical differential and expectations.
15 schema:genre article
16 schema:isAccessibleForFree false
17 schema:isPartOf N03634e22f39d415c9e5a5a036c856938
18 Nf8c00937dcde4aaab23ccd9dca08732d
19 sg:journal.1044869
20 schema:keywords ability
21 addition
22 analyzes
23 attention
24 bits
25 computational devices
26 darkness
27 definition
28 design
29 devices
30 differential
31 effectiveness
32 evaluation
33 expansion problem
34 expectations
35 grid
36 images
37 improved visual quality
38 low visual quality
39 mathematical differentials
40 matrix design
41 more shadows
42 new RG
43 paper
44 pixel expansion problem
45 preliminary definition
46 problem
47 progressive secret sharing
48 quality
49 random bits
50 random grids
51 reconstructed secret image
52 recovery ability
53 results
54 scheme
55 secret image
56 secret sharing
57 secrets
58 shadow
59 sharing
60 simulation results
61 threshold visual secret sharing
62 visual quality
63 visual secret sharing
64 schema:name Random grid-based threshold visual secret sharing with improved visual quality and lossless recovery ability
65 schema:pagination 20673-20696
66 schema:productId Nb4ecc82c498a48d691a0e99fce6ec53a
67 Nbc6f189b8e7e4df0b746aaeff2a51619
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099690540
69 https://doi.org/10.1007/s11042-017-5482-3
70 schema:sdDatePublished 2022-12-01T06:36
71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
72 schema:sdPublisher N76eab0b8cf124e3697417ff16ddecb62
73 schema:url https://doi.org/10.1007/s11042-017-5482-3
74 sgo:license sg:explorer/license/
75 sgo:sdDataset articles
76 rdf:type schema:ScholarlyArticle
77 N03634e22f39d415c9e5a5a036c856938 schema:volumeNumber 77
78 rdf:type schema:PublicationVolume
79 N1dd7cb4f81344f7a97db7bdecaa2fd58 rdf:first sg:person.0747621071.51
80 rdf:rest rdf:nil
81 N4304ff6d415d4c5a9a36439faae739ca rdf:first sg:person.010467364517.31
82 rdf:rest N1dd7cb4f81344f7a97db7bdecaa2fd58
83 N76eab0b8cf124e3697417ff16ddecb62 schema:name Springer Nature - SN SciGraph project
84 rdf:type schema:Organization
85 Nb4ecc82c498a48d691a0e99fce6ec53a schema:name doi
86 schema:value 10.1007/s11042-017-5482-3
87 rdf:type schema:PropertyValue
88 Nbc6f189b8e7e4df0b746aaeff2a51619 schema:name dimensions_id
89 schema:value pub.1099690540
90 rdf:type schema:PropertyValue
91 Ncee7320c554f479eaba3c6ccdfc8efec rdf:first sg:person.014301003402.29
92 rdf:rest Ne9bdeb3b558e46328e2946fdcc6b4a3d
93 Ne9bdeb3b558e46328e2946fdcc6b4a3d rdf:first sg:person.013117766471.90
94 rdf:rest N4304ff6d415d4c5a9a36439faae739ca
95 Nf8c00937dcde4aaab23ccd9dca08732d schema:issueNumber 16
96 rdf:type schema:PublicationIssue
97 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
98 schema:name Information and Computing Sciences
99 rdf:type schema:DefinedTerm
100 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
101 schema:name Artificial Intelligence and Image Processing
102 rdf:type schema:DefinedTerm
103 sg:grant.7203143 http://pending.schema.org/fundedItem sg:pub.10.1007/s11042-017-5482-3
104 rdf:type schema:MonetaryGrant
105 sg:grant.8292720 http://pending.schema.org/fundedItem sg:pub.10.1007/s11042-017-5482-3
106 rdf:type schema:MonetaryGrant
107 sg:grant.8297278 http://pending.schema.org/fundedItem sg:pub.10.1007/s11042-017-5482-3
108 rdf:type schema:MonetaryGrant
109 sg:grant.8297657 http://pending.schema.org/fundedItem sg:pub.10.1007/s11042-017-5482-3
110 rdf:type schema:MonetaryGrant
111 sg:grant.8298895 http://pending.schema.org/fundedItem sg:pub.10.1007/s11042-017-5482-3
112 rdf:type schema:MonetaryGrant
113 sg:grant.8306277 http://pending.schema.org/fundedItem sg:pub.10.1007/s11042-017-5482-3
114 rdf:type schema:MonetaryGrant
115 sg:journal.1044869 schema:issn 1380-7501
116 1573-7721
117 schema:name Multimedia Tools and Applications
118 schema:publisher Springer Nature
119 rdf:type schema:Periodical
120 sg:person.010467364517.31 schema:affiliation grid-institutes:None
121 schema:familyName Yan
122 schema:givenName Xuehu
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010467364517.31
124 rdf:type schema:Person
125 sg:person.013117766471.90 schema:affiliation grid-institutes:grid.19373.3f
126 schema:familyName Wang
127 schema:givenName Shen
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013117766471.90
129 rdf:type schema:Person
130 sg:person.014301003402.29 schema:affiliation grid-institutes:grid.411994.0
131 schema:familyName Liu
132 schema:givenName Xin
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014301003402.29
134 rdf:type schema:Person
135 sg:person.0747621071.51 schema:affiliation grid-institutes:grid.19373.3f
136 schema:familyName Zhang
137 schema:givenName Weizhe
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0747621071.51
139 rdf:type schema:Person
140 sg:pub.10.1007/s11042-013-1784-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021413130
141 https://doi.org/10.1007/s11042-013-1784-2
142 rdf:type schema:CreativeWork
143 sg:pub.10.1007/s11042-014-2080-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015360804
144 https://doi.org/10.1007/s11042-014-2080-5
145 rdf:type schema:CreativeWork
146 sg:pub.10.1007/s11042-015-2779-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1052643056
147 https://doi.org/10.1007/s11042-015-2779-y
148 rdf:type schema:CreativeWork
149 sg:pub.10.1007/s11042-015-3188-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1041706779
150 https://doi.org/10.1007/s11042-015-3188-y
151 rdf:type schema:CreativeWork
152 sg:pub.10.1007/s11554-015-0540-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022432477
153 https://doi.org/10.1007/s11554-015-0540-4
154 rdf:type schema:CreativeWork
155 sg:pub.10.1007/s11554-016-0621-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1009229081
156 https://doi.org/10.1007/s11554-016-0621-z
157 rdf:type schema:CreativeWork
158 sg:pub.10.1007/s11554-016-0644-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016948860
159 https://doi.org/10.1007/s11554-016-0644-5
160 rdf:type schema:CreativeWork
161 sg:pub.10.1007/s11554-017-0678-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084031870
162 https://doi.org/10.1007/s11554-017-0678-3
163 rdf:type schema:CreativeWork
164 grid-institutes:None schema:alternateName Electronic Engineering Institute, 230037, Hefei, China
165 schema:name Electronic Engineering Institute, 230037, Hefei, China
166 rdf:type schema:Organization
167 grid-institutes:grid.19373.3f schema:alternateName School of Computer Science and Technology, Harbin Institute of Technology, 150080, Harbin, China
168 schema:name School of Computer Science and Technology, Harbin Institute of Technology, 150080, Harbin, China
169 rdf:type schema:Organization
170 grid-institutes:grid.411994.0 schema:alternateName Modern Educational Technology Center, Harbin University of Science and Technology, 150080, Harbin, China
171 schema:name Modern Educational Technology Center, Harbin University of Science and Technology, 150080, Harbin, China
172 School of Computer Science and Technology, Harbin Institute of Technology, 150080, Harbin, China
173 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...