Greyscale-images-oriented progressive secret sharing based on the linear congruence equation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-12-13

AUTHORS

Lintao Liu, Yuliang Lu, Xuehu Yan, Huaixi Wang

ABSTRACT

Secret image sharing (SIS) can be applied to protect a secret image when the secret is transmitted in public channels. However, classic SIS schemes, e.g., visual secret sharing (VSS) and Shamir’s polynomial-based scheme, are not suitable for progressive encryption of greyscale images, because they will lead to many problems, such as “All-or-Nothing”, lossy recovery, complex computations and so on. Based on the linear congruence equation, three novel progressive secret sharing (PSS) schemes are proposed to overcome these problems: (k, k) threshold LCSS and (k, n) threshold LCPSS aim to achieve general threshold progressive secret sharing with simple computations. Furthermore, extended LCPSS (ELCPSS) is developed to generate meaningful shadow images, which enable simple management and misleading the enemy. Both theoretical proofs and experimental results are given to demonstrate the validity of the proposed scheme. More... »

PAGES

20569-20596

References to SciGraph publications

  • 2014. Non-expanding Friendly Visual Cryptography in GENETIC AND EVOLUTIONARY COMPUTING
  • 1995. Visual cryptography in ADVANCES IN CRYPTOLOGY — EUROCRYPT'94
  • 2004. Almost Ideal Contrast Visual Cryptography with Reversing in TOPICS IN CRYPTOLOGY – CT-RSA 2004
  • 2016-04-22. Secret sharing: using meaningful image shadows based on Gray code in MULTIMEDIA TOOLS AND APPLICATIONS
  • 2015-10-27. An enhanced threshold visual secret sharing based on random grids in JOURNAL OF REAL-TIME IMAGE PROCESSING
  • 2016-10-04. Perfect contrast XOR-based visual cryptography schemes via linear algebra in DESIGNS, CODES AND CRYPTOGRAPHY
  • 2016-01-09. Towards unsupervised physical activity recognition using smartphone accelerometers in MULTIMEDIA TOOLS AND APPLICATIONS
  • 2005-10. XOR-based Visual Cryptography Schemes in DESIGNS, CODES AND CRYPTOGRAPHY
  • 2005-06. Optimal Colored Threshold Visual Cryptography Schemes in DESIGNS, CODES AND CRYPTOGRAPHY
  • 2014. A Novel Perceptual Secret Sharing Scheme in TRANSACTIONS ON DATA HIDING AND MULTIMEDIA SECURITY IX
  • 2004. Visual Crypto Displays Enabling Secure Communications in SECURITY IN PERVASIVE COMPUTING
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11042-017-5435-x

    DOI

    http://dx.doi.org/10.1007/s11042-017-5435-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1099695354


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "National University of Defense Technology, 230037, Hefei, China", 
              "id": "http://www.grid.ac/institutes/grid.412110.7", 
              "name": [
                "National University of Defense Technology, 230037, Hefei, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Lintao", 
            "id": "sg:person.013517427271.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013517427271.32"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National University of Defense Technology, 230037, Hefei, China", 
              "id": "http://www.grid.ac/institutes/grid.412110.7", 
              "name": [
                "National University of Defense Technology, 230037, Hefei, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lu", 
            "givenName": "Yuliang", 
            "id": "sg:person.015112370271.93", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015112370271.93"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National University of Defense Technology, 230037, Hefei, China", 
              "id": "http://www.grid.ac/institutes/grid.412110.7", 
              "name": [
                "National University of Defense Technology, 230037, Hefei, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yan", 
            "givenName": "Xuehu", 
            "id": "sg:person.010467364517.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010467364517.31"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National University of Defense Technology, 230037, Hefei, China", 
              "id": "http://www.grid.ac/institutes/grid.412110.7", 
              "name": [
                "National University of Defense Technology, 230037, Hefei, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Huaixi", 
            "id": "sg:person.07720630554.56", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07720630554.56"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-642-55046-1_5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001289094", 
              "https://doi.org/10.1007/978-3-642-55046-1_5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0053419", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008839066", 
              "https://doi.org/10.1007/bfb0053419"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-24660-2_27", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004514095", 
              "https://doi.org/10.1007/978-3-540-24660-2_27"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10623-004-3816-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027834328", 
              "https://doi.org/10.1007/s10623-004-3816-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10623-016-0285-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030004022", 
              "https://doi.org/10.1007/s10623-016-0285-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-01796-9_16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003040998", 
              "https://doi.org/10.1007/978-3-319-01796-9_16"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11042-016-3535-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026122719", 
              "https://doi.org/10.1007/s11042-016-3535-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11042-015-3188-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041706779", 
              "https://doi.org/10.1007/s11042-015-3188-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11554-015-0540-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022432477", 
              "https://doi.org/10.1007/s11554-015-0540-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-39881-3_23", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049165869", 
              "https://doi.org/10.1007/978-3-540-39881-3_23"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10623-003-6741-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033328084", 
              "https://doi.org/10.1007/s10623-003-6741-z"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-12-13", 
        "datePublishedReg": "2017-12-13", 
        "description": "Secret image sharing (SIS) can be applied to protect a secret image when the secret is transmitted in public channels. However, classic SIS schemes, e.g., visual secret sharing (VSS) and Shamir\u2019s polynomial-based scheme, are not suitable for progressive encryption of greyscale images, because they will lead to many problems, such as \u201cAll-or-Nothing\u201d, lossy recovery, complex computations and so on. Based on the linear congruence equation, three novel progressive secret sharing (PSS) schemes are proposed to overcome these problems: (k, k) threshold LCSS and (k, n) threshold LCPSS aim to achieve general threshold progressive secret sharing with simple computations. Furthermore, extended LCPSS (ELCPSS) is developed to generate meaningful shadow images, which enable simple management and misleading the enemy. Both theoretical proofs and experimental results are given to demonstrate the validity of the proposed scheme.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11042-017-5435-x", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.8304044", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1044869", 
            "issn": [
              "1380-7501", 
              "1573-7721"
            ], 
            "name": "Multimedia Tools and Applications", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "16", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "77"
          }
        ], 
        "keywords": [
          "visual secret sharing", 
          "secret image sharing", 
          "polynomial-based scheme", 
          "progressive secret sharing", 
          "secret sharing", 
          "linear congruence equations", 
          "meaningful shadow images", 
          "secret sharing scheme", 
          "progressive encryption", 
          "lossy recovery", 
          "secret image", 
          "image sharing", 
          "SIS schemes", 
          "sharing scheme", 
          "public channel", 
          "complex computations", 
          "congruence equations", 
          "shadow images", 
          "greyscale images", 
          "sharing", 
          "theoretical proof", 
          "simple computation", 
          "simple management", 
          "experimental results", 
          "images", 
          "scheme", 
          "computation", 
          "encryption", 
          "LCSS", 
          "secrets", 
          "proof", 
          "management", 
          "channels", 
          "results", 
          "validity", 
          "All", 
          "equations", 
          "enemies", 
          "recovery", 
          "problem"
        ], 
        "name": "Greyscale-images-oriented progressive secret sharing based on the linear congruence equation", 
        "pagination": "20569-20596", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1099695354"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11042-017-5435-x"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11042-017-5435-x", 
          "https://app.dimensions.ai/details/publication/pub.1099695354"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:35", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_722.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11042-017-5435-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11042-017-5435-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11042-017-5435-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11042-017-5435-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11042-017-5435-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    164 TRIPLES      21 PREDICATES      75 URIs      56 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11042-017-5435-x schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author Nc5aa82d98a484c9683e2e6b3f4314dda
    4 schema:citation sg:pub.10.1007/978-3-319-01796-9_16
    5 sg:pub.10.1007/978-3-540-24660-2_27
    6 sg:pub.10.1007/978-3-540-39881-3_23
    7 sg:pub.10.1007/978-3-642-55046-1_5
    8 sg:pub.10.1007/bfb0053419
    9 sg:pub.10.1007/s10623-003-6741-z
    10 sg:pub.10.1007/s10623-004-3816-4
    11 sg:pub.10.1007/s10623-016-0285-5
    12 sg:pub.10.1007/s11042-015-3188-y
    13 sg:pub.10.1007/s11042-016-3535-7
    14 sg:pub.10.1007/s11554-015-0540-4
    15 schema:datePublished 2017-12-13
    16 schema:datePublishedReg 2017-12-13
    17 schema:description Secret image sharing (SIS) can be applied to protect a secret image when the secret is transmitted in public channels. However, classic SIS schemes, e.g., visual secret sharing (VSS) and Shamir’s polynomial-based scheme, are not suitable for progressive encryption of greyscale images, because they will lead to many problems, such as “All-or-Nothing”, lossy recovery, complex computations and so on. Based on the linear congruence equation, three novel progressive secret sharing (PSS) schemes are proposed to overcome these problems: (k, k) threshold LCSS and (k, n) threshold LCPSS aim to achieve general threshold progressive secret sharing with simple computations. Furthermore, extended LCPSS (ELCPSS) is developed to generate meaningful shadow images, which enable simple management and misleading the enemy. Both theoretical proofs and experimental results are given to demonstrate the validity of the proposed scheme.
    18 schema:genre article
    19 schema:isAccessibleForFree false
    20 schema:isPartOf N5f20ecb54f3e4abf994a56f48f2eb6f9
    21 Ne28d36e1ebb74aae93284c97e29406d7
    22 sg:journal.1044869
    23 schema:keywords All
    24 LCSS
    25 SIS schemes
    26 channels
    27 complex computations
    28 computation
    29 congruence equations
    30 encryption
    31 enemies
    32 equations
    33 experimental results
    34 greyscale images
    35 image sharing
    36 images
    37 linear congruence equations
    38 lossy recovery
    39 management
    40 meaningful shadow images
    41 polynomial-based scheme
    42 problem
    43 progressive encryption
    44 progressive secret sharing
    45 proof
    46 public channel
    47 recovery
    48 results
    49 scheme
    50 secret image
    51 secret image sharing
    52 secret sharing
    53 secret sharing scheme
    54 secrets
    55 shadow images
    56 sharing
    57 sharing scheme
    58 simple computation
    59 simple management
    60 theoretical proof
    61 validity
    62 visual secret sharing
    63 schema:name Greyscale-images-oriented progressive secret sharing based on the linear congruence equation
    64 schema:pagination 20569-20596
    65 schema:productId N9b27c5ffa30d494b82e8a1f069155a3b
    66 Nbe7dead1999549ea820336ea0a7a0058
    67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099695354
    68 https://doi.org/10.1007/s11042-017-5435-x
    69 schema:sdDatePublished 2022-12-01T06:35
    70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    71 schema:sdPublisher N3e90a1f330cf4c7a85af39876b113923
    72 schema:url https://doi.org/10.1007/s11042-017-5435-x
    73 sgo:license sg:explorer/license/
    74 sgo:sdDataset articles
    75 rdf:type schema:ScholarlyArticle
    76 N3e90a1f330cf4c7a85af39876b113923 schema:name Springer Nature - SN SciGraph project
    77 rdf:type schema:Organization
    78 N5f20ecb54f3e4abf994a56f48f2eb6f9 schema:volumeNumber 77
    79 rdf:type schema:PublicationVolume
    80 N9b27c5ffa30d494b82e8a1f069155a3b schema:name dimensions_id
    81 schema:value pub.1099695354
    82 rdf:type schema:PropertyValue
    83 Nb9da8f1fc03d4506af7d5b1b8a128116 rdf:first sg:person.07720630554.56
    84 rdf:rest rdf:nil
    85 Nbe7dead1999549ea820336ea0a7a0058 schema:name doi
    86 schema:value 10.1007/s11042-017-5435-x
    87 rdf:type schema:PropertyValue
    88 Nbec8eef65f6d4bfc958a7b501b511c67 rdf:first sg:person.015112370271.93
    89 rdf:rest Nfa1affac59ab4fbe806977090e95455e
    90 Nc5aa82d98a484c9683e2e6b3f4314dda rdf:first sg:person.013517427271.32
    91 rdf:rest Nbec8eef65f6d4bfc958a7b501b511c67
    92 Ne28d36e1ebb74aae93284c97e29406d7 schema:issueNumber 16
    93 rdf:type schema:PublicationIssue
    94 Nfa1affac59ab4fbe806977090e95455e rdf:first sg:person.010467364517.31
    95 rdf:rest Nb9da8f1fc03d4506af7d5b1b8a128116
    96 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    97 schema:name Information and Computing Sciences
    98 rdf:type schema:DefinedTerm
    99 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    100 schema:name Artificial Intelligence and Image Processing
    101 rdf:type schema:DefinedTerm
    102 sg:grant.8304044 http://pending.schema.org/fundedItem sg:pub.10.1007/s11042-017-5435-x
    103 rdf:type schema:MonetaryGrant
    104 sg:journal.1044869 schema:issn 1380-7501
    105 1573-7721
    106 schema:name Multimedia Tools and Applications
    107 schema:publisher Springer Nature
    108 rdf:type schema:Periodical
    109 sg:person.010467364517.31 schema:affiliation grid-institutes:grid.412110.7
    110 schema:familyName Yan
    111 schema:givenName Xuehu
    112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010467364517.31
    113 rdf:type schema:Person
    114 sg:person.013517427271.32 schema:affiliation grid-institutes:grid.412110.7
    115 schema:familyName Liu
    116 schema:givenName Lintao
    117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013517427271.32
    118 rdf:type schema:Person
    119 sg:person.015112370271.93 schema:affiliation grid-institutes:grid.412110.7
    120 schema:familyName Lu
    121 schema:givenName Yuliang
    122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015112370271.93
    123 rdf:type schema:Person
    124 sg:person.07720630554.56 schema:affiliation grid-institutes:grid.412110.7
    125 schema:familyName Wang
    126 schema:givenName Huaixi
    127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07720630554.56
    128 rdf:type schema:Person
    129 sg:pub.10.1007/978-3-319-01796-9_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003040998
    130 https://doi.org/10.1007/978-3-319-01796-9_16
    131 rdf:type schema:CreativeWork
    132 sg:pub.10.1007/978-3-540-24660-2_27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004514095
    133 https://doi.org/10.1007/978-3-540-24660-2_27
    134 rdf:type schema:CreativeWork
    135 sg:pub.10.1007/978-3-540-39881-3_23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049165869
    136 https://doi.org/10.1007/978-3-540-39881-3_23
    137 rdf:type schema:CreativeWork
    138 sg:pub.10.1007/978-3-642-55046-1_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001289094
    139 https://doi.org/10.1007/978-3-642-55046-1_5
    140 rdf:type schema:CreativeWork
    141 sg:pub.10.1007/bfb0053419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008839066
    142 https://doi.org/10.1007/bfb0053419
    143 rdf:type schema:CreativeWork
    144 sg:pub.10.1007/s10623-003-6741-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1033328084
    145 https://doi.org/10.1007/s10623-003-6741-z
    146 rdf:type schema:CreativeWork
    147 sg:pub.10.1007/s10623-004-3816-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027834328
    148 https://doi.org/10.1007/s10623-004-3816-4
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1007/s10623-016-0285-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030004022
    151 https://doi.org/10.1007/s10623-016-0285-5
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1007/s11042-015-3188-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1041706779
    154 https://doi.org/10.1007/s11042-015-3188-y
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1007/s11042-016-3535-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026122719
    157 https://doi.org/10.1007/s11042-016-3535-7
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1007/s11554-015-0540-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022432477
    160 https://doi.org/10.1007/s11554-015-0540-4
    161 rdf:type schema:CreativeWork
    162 grid-institutes:grid.412110.7 schema:alternateName National University of Defense Technology, 230037, Hefei, China
    163 schema:name National University of Defense Technology, 230037, Hefei, China
    164 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...