CPU-based real-time maximim intensity projection via fast matrix transposition using parallelization operations with AVX instruction set View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-06

AUTHORS

Heewon Kye, Se Hee Lee, Jeongjin Lee

ABSTRACT

Rapid visualization is essential for maximum intensity projection (MIP) rendering, since the acquisition of a perceptual depth can require frequent changes of a viewing direction. In this paper, we propose a CPU-based real-time MIP method that uses parallelization operations with the AVX instruction set. We improve shear-warp based MIP rendering by resolving the bottle-neck problems of the previous method of a matrix transposition. We propose a novel matrix transposition method using the AVX instruction set to minimize bottle-neck problems. Experimental results show that the speed of MIP rendering on general CPU is faster than 20 frame-per-second (fps) for a 512 × 512 × 552 volume dataset. Our matrix transposition method can be applied to other image processing algorithms for faster processing. More... »

PAGES

15971-15994

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11042-017-5171-2

DOI

http://dx.doi.org/10.1007/s11042-017-5171-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091575899


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Hansung University", 
          "id": "https://www.grid.ac/institutes/grid.444079.a", 
          "name": [
            "Division of Computer Engineering, Hansung University, 116 Samseongyoro-16Gil Seongbuk-gu, 136-792, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kye", 
        "givenName": "Heewon", 
        "id": "sg:person.015100172437.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015100172437.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hansung University", 
          "id": "https://www.grid.ac/institutes/grid.444079.a", 
          "name": [
            "Department of Information Systems Engineering, Hansung University, 116 Samseongyoro-16Gil Seongbuk-gu, 136-792, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Se Hee", 
        "id": "sg:person.010405136435.56", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010405136435.56"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Soongsil University", 
          "id": "https://www.grid.ac/institutes/grid.263765.3", 
          "name": [
            "School of Computer Science & Engineering, Soongsil University, 369 Sangdo-Ro, Dongjak-Gu, 156-743, Seoul, South Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lee", 
        "givenName": "Jeongjin", 
        "id": "sg:person.01011505663.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01011505663.09"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/1995896.1995938", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000291322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/1467-8659.00426", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001904335"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2015.08.096", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003311308"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.10114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012921530"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1095878.1095886", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014599285"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/346876.348238", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016673949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-45289-9_20", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030032753", 
          "https://doi.org/10.1007/978-3-662-45289-9_20"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-7091-6803-5_13", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037180573", 
          "https://doi.org/10.1007/978-3-7091-6803-5_13"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/192161.192283", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039224446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11042-015-3188-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041706779", 
          "https://doi.org/10.1007/s11042-015-3188-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/285305.285315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050809340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/378456.378476", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053552638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/42.222666", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061170100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/titb.2005.863871", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061656442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmca.2012.2223670", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061795976"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5121/ijcsit.2014.6305", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072616689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/vsmm.2010.5665969", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094573097"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/54852.378476", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098960488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5220/0002843201900198", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099356281"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-06", 
    "datePublishedReg": "2018-06-01", 
    "description": "Rapid visualization is essential for maximum intensity projection (MIP) rendering, since the acquisition of a perceptual depth can require frequent changes of a viewing direction. In this paper, we propose a CPU-based real-time MIP method that uses parallelization operations with the AVX instruction set. We improve shear-warp based MIP rendering by resolving the bottle-neck problems of the previous method of a matrix transposition. We propose a novel matrix transposition method using the AVX instruction set to minimize bottle-neck problems. Experimental results show that the speed of MIP rendering on general CPU is faster than 20 frame-per-second (fps) for a 512 \u00d7 512 \u00d7 552 volume dataset. Our matrix transposition method can be applied to other image processing algorithms for faster processing.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11042-017-5171-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1044869", 
        "issn": [
          "1380-7501", 
          "1573-7721"
        ], 
        "name": "Multimedia Tools and Applications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "77"
      }
    ], 
    "name": "CPU-based real-time maximim intensity projection via fast matrix transposition using parallelization operations with AVX instruction set", 
    "pagination": "15971-15994", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "97a75d679db73a7f527c788de1ef8588cb9c1e066138757c2d1d90704448df4e"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11042-017-5171-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091575899"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11042-017-5171-2", 
      "https://app.dimensions.ai/details/publication/pub.1091575899"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000517.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11042-017-5171-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11042-017-5171-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11042-017-5171-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11042-017-5171-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11042-017-5171-2'


 

This table displays all metadata directly associated to this object as RDF triples.

139 TRIPLES      21 PREDICATES      46 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11042-017-5171-2 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N35ec15ac6dc342e380b0b78779e4b88e
4 schema:citation sg:pub.10.1007/978-3-662-45289-9_20
5 sg:pub.10.1007/978-3-7091-6803-5_13
6 sg:pub.10.1007/s11042-015-3188-y
7 https://doi.org/10.1002/mrm.10114
8 https://doi.org/10.1016/j.neucom.2015.08.096
9 https://doi.org/10.1109/42.222666
10 https://doi.org/10.1109/titb.2005.863871
11 https://doi.org/10.1109/tsmca.2012.2223670
12 https://doi.org/10.1109/vsmm.2010.5665969
13 https://doi.org/10.1111/1467-8659.00426
14 https://doi.org/10.1145/1095878.1095886
15 https://doi.org/10.1145/192161.192283
16 https://doi.org/10.1145/1995896.1995938
17 https://doi.org/10.1145/285305.285315
18 https://doi.org/10.1145/346876.348238
19 https://doi.org/10.1145/378456.378476
20 https://doi.org/10.1145/54852.378476
21 https://doi.org/10.5121/ijcsit.2014.6305
22 https://doi.org/10.5220/0002843201900198
23 schema:datePublished 2018-06
24 schema:datePublishedReg 2018-06-01
25 schema:description Rapid visualization is essential for maximum intensity projection (MIP) rendering, since the acquisition of a perceptual depth can require frequent changes of a viewing direction. In this paper, we propose a CPU-based real-time MIP method that uses parallelization operations with the AVX instruction set. We improve shear-warp based MIP rendering by resolving the bottle-neck problems of the previous method of a matrix transposition. We propose a novel matrix transposition method using the AVX instruction set to minimize bottle-neck problems. Experimental results show that the speed of MIP rendering on general CPU is faster than 20 frame-per-second (fps) for a 512 × 512 × 552 volume dataset. Our matrix transposition method can be applied to other image processing algorithms for faster processing.
26 schema:genre research_article
27 schema:inLanguage en
28 schema:isAccessibleForFree false
29 schema:isPartOf N5c334d8b60244324b0a9cbab6feea7ce
30 N65c9c2d4797f49dea80348db81bcac1b
31 sg:journal.1044869
32 schema:name CPU-based real-time maximim intensity projection via fast matrix transposition using parallelization operations with AVX instruction set
33 schema:pagination 15971-15994
34 schema:productId N0415aa4ea29749d884799aef7e13a3da
35 N0785e8763578469795314f9df0ee7576
36 Nd32d8f9ad77d490eaabbbef8e345b60a
37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091575899
38 https://doi.org/10.1007/s11042-017-5171-2
39 schema:sdDatePublished 2019-04-10T22:33
40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
41 schema:sdPublisher N2a7160fe4a2f4845aa99912975b9f8f7
42 schema:url http://link.springer.com/10.1007%2Fs11042-017-5171-2
43 sgo:license sg:explorer/license/
44 sgo:sdDataset articles
45 rdf:type schema:ScholarlyArticle
46 N0415aa4ea29749d884799aef7e13a3da schema:name readcube_id
47 schema:value 97a75d679db73a7f527c788de1ef8588cb9c1e066138757c2d1d90704448df4e
48 rdf:type schema:PropertyValue
49 N0785e8763578469795314f9df0ee7576 schema:name dimensions_id
50 schema:value pub.1091575899
51 rdf:type schema:PropertyValue
52 N2a7160fe4a2f4845aa99912975b9f8f7 schema:name Springer Nature - SN SciGraph project
53 rdf:type schema:Organization
54 N35ec15ac6dc342e380b0b78779e4b88e rdf:first sg:person.015100172437.15
55 rdf:rest Nc1b77a7cc3f74eababc3b9cfdd00c84b
56 N4ef75460251949e290fa523039e3c738 rdf:first sg:person.01011505663.09
57 rdf:rest rdf:nil
58 N5c334d8b60244324b0a9cbab6feea7ce schema:volumeNumber 77
59 rdf:type schema:PublicationVolume
60 N65c9c2d4797f49dea80348db81bcac1b schema:issueNumber 12
61 rdf:type schema:PublicationIssue
62 Nc1b77a7cc3f74eababc3b9cfdd00c84b rdf:first sg:person.010405136435.56
63 rdf:rest N4ef75460251949e290fa523039e3c738
64 Nd32d8f9ad77d490eaabbbef8e345b60a schema:name doi
65 schema:value 10.1007/s11042-017-5171-2
66 rdf:type schema:PropertyValue
67 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
68 schema:name Information and Computing Sciences
69 rdf:type schema:DefinedTerm
70 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
71 schema:name Artificial Intelligence and Image Processing
72 rdf:type schema:DefinedTerm
73 sg:journal.1044869 schema:issn 1380-7501
74 1573-7721
75 schema:name Multimedia Tools and Applications
76 rdf:type schema:Periodical
77 sg:person.01011505663.09 schema:affiliation https://www.grid.ac/institutes/grid.263765.3
78 schema:familyName Lee
79 schema:givenName Jeongjin
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01011505663.09
81 rdf:type schema:Person
82 sg:person.010405136435.56 schema:affiliation https://www.grid.ac/institutes/grid.444079.a
83 schema:familyName Lee
84 schema:givenName Se Hee
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010405136435.56
86 rdf:type schema:Person
87 sg:person.015100172437.15 schema:affiliation https://www.grid.ac/institutes/grid.444079.a
88 schema:familyName Kye
89 schema:givenName Heewon
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015100172437.15
91 rdf:type schema:Person
92 sg:pub.10.1007/978-3-662-45289-9_20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030032753
93 https://doi.org/10.1007/978-3-662-45289-9_20
94 rdf:type schema:CreativeWork
95 sg:pub.10.1007/978-3-7091-6803-5_13 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037180573
96 https://doi.org/10.1007/978-3-7091-6803-5_13
97 rdf:type schema:CreativeWork
98 sg:pub.10.1007/s11042-015-3188-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1041706779
99 https://doi.org/10.1007/s11042-015-3188-y
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1002/mrm.10114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012921530
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/j.neucom.2015.08.096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003311308
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1109/42.222666 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061170100
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1109/titb.2005.863871 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061656442
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1109/tsmca.2012.2223670 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061795976
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1109/vsmm.2010.5665969 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094573097
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1111/1467-8659.00426 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001904335
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1145/1095878.1095886 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014599285
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1145/192161.192283 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039224446
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1145/1995896.1995938 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000291322
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1145/285305.285315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050809340
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1145/346876.348238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016673949
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1145/378456.378476 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053552638
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1145/54852.378476 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098960488
128 rdf:type schema:CreativeWork
129 https://doi.org/10.5121/ijcsit.2014.6305 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072616689
130 rdf:type schema:CreativeWork
131 https://doi.org/10.5220/0002843201900198 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099356281
132 rdf:type schema:CreativeWork
133 https://www.grid.ac/institutes/grid.263765.3 schema:alternateName Soongsil University
134 schema:name School of Computer Science & Engineering, Soongsil University, 369 Sangdo-Ro, Dongjak-Gu, 156-743, Seoul, South Korea
135 rdf:type schema:Organization
136 https://www.grid.ac/institutes/grid.444079.a schema:alternateName Hansung University
137 schema:name Department of Information Systems Engineering, Hansung University, 116 Samseongyoro-16Gil Seongbuk-gu, 136-792, Seoul, South Korea
138 Division of Computer Engineering, Hansung University, 116 Samseongyoro-16Gil Seongbuk-gu, 136-792, Seoul, South Korea
139 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...