Stereo System for Remote Monitoring of River Flows View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-09-22

AUTHORS

Konstantinos Bacharidis, Konstantia Moirogiorgou, Georgia Koukiou, George Giakos, Michalis Zervakis

ABSTRACT

In this article we present a video-based method for river flow monitoring. The proposed method aims at deriving efficient approximations of the river velocity using natural formations on the river surface. In order to overcome peculiarities of the flow, we propose to uniformly exploit all such structures that appear locally with short temporal duration. Towards this direction we explore the expanded capabilities of a stereoscopic camera layout with the dual observation fields and the potential of reverting projective deformations. By mapping to world coordinates, all spatial locations in the video reflect velocity as a uniform field, except for local flow variations. The velocity estimation is performed by computing the optical flow using a series of video frames, combining the information of the views of both cameras. The novelty of the proposed river flow estimation scheme lies on the fact that the accuracy of motion estimation is increased due to the use of the complementary views, which also enables the transition from a 2-Dimensional image-based velocity estimate to 3-Dimensional estimates. The estimated optical velocity is back-projected to the real world coordinates using the parameters extracted using the stereoscopic layout. The results on simulated and real conditions demonstrate that the proposed method is efficient in the estimation of the surface velocity and robust against locally disappearing formations, since it can compensate for a loss with other formations active in the field of view. More... »

PAGES

9535-9566

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11042-017-5148-1

DOI

http://dx.doi.org/10.1007/s11042-017-5148-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091895196


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Electrical and Computer Engineering School, Technical University of Crete, Chania, Greece", 
          "id": "http://www.grid.ac/institutes/grid.6809.7", 
          "name": [
            "Electrical and Computer Engineering School, Technical University of Crete, Chania, Greece"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bacharidis", 
        "givenName": "Konstantinos", 
        "id": "sg:person.015532124543.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015532124543.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Electrical and Computer Engineering School, Technical University of Crete, Chania, Greece", 
          "id": "http://www.grid.ac/institutes/grid.6809.7", 
          "name": [
            "Electrical and Computer Engineering School, Technical University of Crete, Chania, Greece"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Moirogiorgou", 
        "givenName": "Konstantia", 
        "id": "sg:person.014454341640.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014454341640.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Electronics Lab, Physics Department, University of Patras, Patras, Greece", 
          "id": "http://www.grid.ac/institutes/grid.11047.33", 
          "name": [
            "Electronics Lab, Physics Department, University of Patras, Patras, Greece"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Koukiou", 
        "givenName": "Georgia", 
        "id": "sg:person.07715654531.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07715654531.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Electrical and Computer Engineering School, Manhattan College, Bronx, NY, USA", 
          "id": "http://www.grid.ac/institutes/grid.259586.5", 
          "name": [
            "Electrical and Computer Engineering School, Manhattan College, Bronx, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Giakos", 
        "givenName": "George", 
        "id": "sg:person.011424354623.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011424354623.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Electrical and Computer Engineering School, Technical University of Crete, Chania, Greece", 
          "id": "http://www.grid.ac/institutes/grid.6809.7", 
          "name": [
            "Electrical and Computer Engineering School, Technical University of Crete, Chania, Greece"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zervakis", 
        "givenName": "Michalis", 
        "id": "sg:person.01157054267.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01157054267.77"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s00348-001-0396-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045551844", 
          "https://doi.org/10.1007/s00348-001-0396-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00189883", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034805503", 
          "https://doi.org/10.1007/bf00189883"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11069-004-8891-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029266923", 
          "https://doi.org/10.1007/s11069-004-8891-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s003480050082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028311821", 
          "https://doi.org/10.1007/s003480050082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00348-014-1874-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011964748", 
          "https://doi.org/10.1007/s00348-014-1874-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4684-0364-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001572537", 
          "https://doi.org/10.1007/978-1-4684-0364-0"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-09-22", 
    "datePublishedReg": "2017-09-22", 
    "description": "In this article we present a video-based method for river flow monitoring. The proposed method aims at deriving efficient approximations of the river velocity using natural formations on the river surface. In order to overcome peculiarities of the flow, we propose to uniformly exploit all such structures that appear locally with short temporal duration. Towards this direction we explore the expanded capabilities of a stereoscopic camera layout with the dual observation fields and the potential of reverting projective deformations. By mapping to world coordinates, all spatial locations in the video reflect velocity as a uniform field, except for local flow variations. The velocity estimation is performed by computing the optical flow using a series of video frames, combining the information of the views of both cameras. The novelty of the proposed river flow estimation scheme lies on the fact that the accuracy of motion estimation is increased due to the use of the complementary views, which also enables the transition from a 2-Dimensional image-based velocity estimate to 3-Dimensional estimates. The estimated optical velocity is back-projected to the real world coordinates using the parameters extracted using the stereoscopic layout. The results on simulated and real conditions demonstrate that the proposed method is efficient in the estimation of the surface velocity and robust against locally disappearing formations, since it can compensate for a loss with other formations active in the field of view.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11042-017-5148-1", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1044869", 
        "issn": [
          "1380-7501", 
          "1573-7721"
        ], 
        "name": "Multimedia Tools and Applications", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "77"
      }
    ], 
    "keywords": [
      "efficient approximation", 
      "local flow variations", 
      "river flow monitoring", 
      "estimation scheme", 
      "velocity estimation", 
      "world coordinates", 
      "motion estimation", 
      "surface velocity", 
      "velocity estimates", 
      "uniform field", 
      "optical velocity", 
      "projective deformation", 
      "river surface", 
      "optical flow", 
      "real conditions", 
      "river velocity", 
      "real-world coordinates", 
      "estimation", 
      "velocity", 
      "such structures", 
      "coordinates", 
      "flow variations", 
      "field of view", 
      "remote monitoring", 
      "flow monitoring", 
      "field", 
      "short temporal duration", 
      "approximation", 
      "observation field", 
      "flow", 
      "stereo system", 
      "layout", 
      "natural formation", 
      "estimates", 
      "deformation", 
      "spatial location", 
      "camera layout", 
      "scheme", 
      "method", 
      "surface", 
      "video-based method", 
      "monitoring", 
      "parameters", 
      "complementary views", 
      "camera", 
      "accuracy", 
      "capability", 
      "formation", 
      "transition", 
      "temporal duration", 
      "video frames", 
      "novelty", 
      "direction", 
      "system", 
      "structure", 
      "conditions", 
      "order", 
      "frame", 
      "mapping", 
      "view", 
      "location", 
      "variation", 
      "results", 
      "fact", 
      "peculiarities", 
      "River", 
      "potential", 
      "loss", 
      "use", 
      "information", 
      "series", 
      "article", 
      "video", 
      "duration"
    ], 
    "name": "Stereo System for Remote Monitoring of River Flows", 
    "pagination": "9535-9566", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091895196"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11042-017-5148-1"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11042-017-5148-1", 
      "https://app.dimensions.ai/details/publication/pub.1091895196"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_747.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11042-017-5148-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11042-017-5148-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11042-017-5148-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11042-017-5148-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11042-017-5148-1'


 

This table displays all metadata directly associated to this object as RDF triples.

189 TRIPLES      21 PREDICATES      103 URIs      89 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11042-017-5148-1 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N18535a4695904adcbc077d64a2708a4b
4 schema:citation sg:pub.10.1007/978-1-4684-0364-0
5 sg:pub.10.1007/bf00189883
6 sg:pub.10.1007/s00348-001-0396-1
7 sg:pub.10.1007/s00348-014-1874-6
8 sg:pub.10.1007/s003480050082
9 sg:pub.10.1007/s11069-004-8891-3
10 schema:datePublished 2017-09-22
11 schema:datePublishedReg 2017-09-22
12 schema:description In this article we present a video-based method for river flow monitoring. The proposed method aims at deriving efficient approximations of the river velocity using natural formations on the river surface. In order to overcome peculiarities of the flow, we propose to uniformly exploit all such structures that appear locally with short temporal duration. Towards this direction we explore the expanded capabilities of a stereoscopic camera layout with the dual observation fields and the potential of reverting projective deformations. By mapping to world coordinates, all spatial locations in the video reflect velocity as a uniform field, except for local flow variations. The velocity estimation is performed by computing the optical flow using a series of video frames, combining the information of the views of both cameras. The novelty of the proposed river flow estimation scheme lies on the fact that the accuracy of motion estimation is increased due to the use of the complementary views, which also enables the transition from a 2-Dimensional image-based velocity estimate to 3-Dimensional estimates. The estimated optical velocity is back-projected to the real world coordinates using the parameters extracted using the stereoscopic layout. The results on simulated and real conditions demonstrate that the proposed method is efficient in the estimation of the surface velocity and robust against locally disappearing formations, since it can compensate for a loss with other formations active in the field of view.
13 schema:genre article
14 schema:isAccessibleForFree false
15 schema:isPartOf N65d66e237c004cb295f4d7af41eae7ef
16 Na406c98993ea4180b12a9582b6d0e931
17 sg:journal.1044869
18 schema:keywords River
19 accuracy
20 approximation
21 article
22 camera
23 camera layout
24 capability
25 complementary views
26 conditions
27 coordinates
28 deformation
29 direction
30 duration
31 efficient approximation
32 estimates
33 estimation
34 estimation scheme
35 fact
36 field
37 field of view
38 flow
39 flow monitoring
40 flow variations
41 formation
42 frame
43 information
44 layout
45 local flow variations
46 location
47 loss
48 mapping
49 method
50 monitoring
51 motion estimation
52 natural formation
53 novelty
54 observation field
55 optical flow
56 optical velocity
57 order
58 parameters
59 peculiarities
60 potential
61 projective deformation
62 real conditions
63 real-world coordinates
64 remote monitoring
65 results
66 river flow monitoring
67 river surface
68 river velocity
69 scheme
70 series
71 short temporal duration
72 spatial location
73 stereo system
74 structure
75 such structures
76 surface
77 surface velocity
78 system
79 temporal duration
80 transition
81 uniform field
82 use
83 variation
84 velocity
85 velocity estimates
86 velocity estimation
87 video
88 video frames
89 video-based method
90 view
91 world coordinates
92 schema:name Stereo System for Remote Monitoring of River Flows
93 schema:pagination 9535-9566
94 schema:productId N2f048b122bdd4ea797450de5e98d6de9
95 N823d958fd0a34b809c8c2986a711822b
96 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091895196
97 https://doi.org/10.1007/s11042-017-5148-1
98 schema:sdDatePublished 2022-12-01T06:36
99 schema:sdLicense https://scigraph.springernature.com/explorer/license/
100 schema:sdPublisher N62c18ac9c61447909ed4275aabf205fd
101 schema:url https://doi.org/10.1007/s11042-017-5148-1
102 sgo:license sg:explorer/license/
103 sgo:sdDataset articles
104 rdf:type schema:ScholarlyArticle
105 N18535a4695904adcbc077d64a2708a4b rdf:first sg:person.015532124543.82
106 rdf:rest N6728168a2aa040c18b836869dbe968a0
107 N2f048b122bdd4ea797450de5e98d6de9 schema:name dimensions_id
108 schema:value pub.1091895196
109 rdf:type schema:PropertyValue
110 N51bf212de90b494b9078a54d00f4fbc2 rdf:first sg:person.011424354623.78
111 rdf:rest N87f6101fff9d4e1ca0e56f14dc3dad6e
112 N62c18ac9c61447909ed4275aabf205fd schema:name Springer Nature - SN SciGraph project
113 rdf:type schema:Organization
114 N65d66e237c004cb295f4d7af41eae7ef schema:volumeNumber 77
115 rdf:type schema:PublicationVolume
116 N6728168a2aa040c18b836869dbe968a0 rdf:first sg:person.014454341640.04
117 rdf:rest Na84babd486eb43a29709e0404f647695
118 N823d958fd0a34b809c8c2986a711822b schema:name doi
119 schema:value 10.1007/s11042-017-5148-1
120 rdf:type schema:PropertyValue
121 N87f6101fff9d4e1ca0e56f14dc3dad6e rdf:first sg:person.01157054267.77
122 rdf:rest rdf:nil
123 Na406c98993ea4180b12a9582b6d0e931 schema:issueNumber 8
124 rdf:type schema:PublicationIssue
125 Na84babd486eb43a29709e0404f647695 rdf:first sg:person.07715654531.43
126 rdf:rest N51bf212de90b494b9078a54d00f4fbc2
127 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
128 schema:name Information and Computing Sciences
129 rdf:type schema:DefinedTerm
130 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
131 schema:name Artificial Intelligence and Image Processing
132 rdf:type schema:DefinedTerm
133 sg:journal.1044869 schema:issn 1380-7501
134 1573-7721
135 schema:name Multimedia Tools and Applications
136 schema:publisher Springer Nature
137 rdf:type schema:Periodical
138 sg:person.011424354623.78 schema:affiliation grid-institutes:grid.259586.5
139 schema:familyName Giakos
140 schema:givenName George
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011424354623.78
142 rdf:type schema:Person
143 sg:person.01157054267.77 schema:affiliation grid-institutes:grid.6809.7
144 schema:familyName Zervakis
145 schema:givenName Michalis
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01157054267.77
147 rdf:type schema:Person
148 sg:person.014454341640.04 schema:affiliation grid-institutes:grid.6809.7
149 schema:familyName Moirogiorgou
150 schema:givenName Konstantia
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014454341640.04
152 rdf:type schema:Person
153 sg:person.015532124543.82 schema:affiliation grid-institutes:grid.6809.7
154 schema:familyName Bacharidis
155 schema:givenName Konstantinos
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015532124543.82
157 rdf:type schema:Person
158 sg:person.07715654531.43 schema:affiliation grid-institutes:grid.11047.33
159 schema:familyName Koukiou
160 schema:givenName Georgia
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07715654531.43
162 rdf:type schema:Person
163 sg:pub.10.1007/978-1-4684-0364-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001572537
164 https://doi.org/10.1007/978-1-4684-0364-0
165 rdf:type schema:CreativeWork
166 sg:pub.10.1007/bf00189883 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034805503
167 https://doi.org/10.1007/bf00189883
168 rdf:type schema:CreativeWork
169 sg:pub.10.1007/s00348-001-0396-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045551844
170 https://doi.org/10.1007/s00348-001-0396-1
171 rdf:type schema:CreativeWork
172 sg:pub.10.1007/s00348-014-1874-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011964748
173 https://doi.org/10.1007/s00348-014-1874-6
174 rdf:type schema:CreativeWork
175 sg:pub.10.1007/s003480050082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028311821
176 https://doi.org/10.1007/s003480050082
177 rdf:type schema:CreativeWork
178 sg:pub.10.1007/s11069-004-8891-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029266923
179 https://doi.org/10.1007/s11069-004-8891-3
180 rdf:type schema:CreativeWork
181 grid-institutes:grid.11047.33 schema:alternateName Electronics Lab, Physics Department, University of Patras, Patras, Greece
182 schema:name Electronics Lab, Physics Department, University of Patras, Patras, Greece
183 rdf:type schema:Organization
184 grid-institutes:grid.259586.5 schema:alternateName Electrical and Computer Engineering School, Manhattan College, Bronx, NY, USA
185 schema:name Electrical and Computer Engineering School, Manhattan College, Bronx, NY, USA
186 rdf:type schema:Organization
187 grid-institutes:grid.6809.7 schema:alternateName Electrical and Computer Engineering School, Technical University of Crete, Chania, Greece
188 schema:name Electrical and Computer Engineering School, Technical University of Crete, Chania, Greece
189 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...