Pyramidal modeling of geometric distortions for retargeted image quality evaluation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-06

AUTHORS

Maryam Karimi, Shadrokh Samavi, Nader Karimi, S. M. Reza Soroushmehr, Weisi Lin, Kayvan Najarian

ABSTRACT

Content-aware retargeting methods are used to adjust images to different resolutions and aspect ratios with low deformation and information loss in salient regions. Effective objective quality assessment of retargeted images can provide a way to improve retargeting methods. The non-uniform geometrical degradations caused by retargeting algorithms make it impossible to use traditional image quality assessment metrics for retargeted images. Although some quality evaluation methods have been proposed till now, the resulted quality scores are not well correlated with the subjective ones. In this paper we propose a pyramidal global-to-local pooling method to combine pixel/block deformation measures. In each level of locality, the Euclidean distance between the retargeted and original image is used as an individual feature. Therefore, in addition to the global summation, assessment of local deformations, contributes toward better quality evaluation. Learning a regression model based on the extracted features results in better performance compared to relevant existing retargeted image quality methods. More... »

PAGES

13799-13820

References to SciGraph publications

  • 2011-01. Algorithms for video retargeting in MULTIMEDIA TOOLS AND APPLICATIONS
  • 2000-11. The Earth Mover's Distance as a Metric for Image Retrieval in INTERNATIONAL JOURNAL OF COMPUTER VISION
  • 2008. SIFT Flow: Dense Correspondence across Different Scenes in COMPUTER VISION – ECCV 2008
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11042-017-4994-1

    DOI

    http://dx.doi.org/10.1007/s11042-017-4994-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1090927207


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Isfahan University of Technology", 
              "id": "https://www.grid.ac/institutes/grid.411751.7", 
              "name": [
                "Department of Electrical and Computer Engineering, Isfahan University of Technology, 84156-83111, Isfahan, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Karimi", 
            "givenName": "Maryam", 
            "id": "sg:person.010116304313.70", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010116304313.70"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Michigan\u2013Ann Arbor", 
              "id": "https://www.grid.ac/institutes/grid.214458.e", 
              "name": [
                "Department of Electrical and Computer Engineering, Isfahan University of Technology, 84156-83111, Isfahan, Iran", 
                "Michigan Center for Integrative Research in Critical Care, University of Michigan, 48109, Ann Arbor, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Samavi", 
            "givenName": "Shadrokh", 
            "id": "sg:person.0757651554.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0757651554.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Isfahan University of Technology", 
              "id": "https://www.grid.ac/institutes/grid.411751.7", 
              "name": [
                "Department of Electrical and Computer Engineering, Isfahan University of Technology, 84156-83111, Isfahan, Iran"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Karimi", 
            "givenName": "Nader", 
            "id": "sg:person.013110672657.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013110672657.03"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Michigan\u2013Ann Arbor", 
              "id": "https://www.grid.ac/institutes/grid.214458.e", 
              "name": [
                "Michigan Center for Integrative Research in Critical Care, University of Michigan, 48109, Ann Arbor, USA", 
                "Department of Emergency Medicine, University of Michigan, 48109, Ann Arbor, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Soroushmehr", 
            "givenName": "S. M. Reza", 
            "id": "sg:person.011756431405.99", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011756431405.99"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Nanyang Technological University", 
              "id": "https://www.grid.ac/institutes/grid.59025.3b", 
              "name": [
                "School of Computer Engineering, Nanyang Technological University, 639798, Singapore, Singapore"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lin", 
            "givenName": "Weisi", 
            "id": "sg:person.01003746051.15", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01003746051.15"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Michigan\u2013Ann Arbor", 
              "id": "https://www.grid.ac/institutes/grid.214458.e", 
              "name": [
                "Michigan Center for Integrative Research in Critical Care, University of Michigan, 48109, Ann Arbor, USA", 
                "Department of Emergency Medicine, University of Michigan, 48109, Ann Arbor, USA", 
                "Department of Computational Medicine and Bioinformatics, University of Michigan, 48109, Ann Arbor, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Najarian", 
            "givenName": "Kayvan", 
            "id": "sg:person.01220261175.74", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01220261175.74"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1145/1457515.1409071", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002271258"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1576246.1531329", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002273007"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1026543900054", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006187360", 
              "https://doi.org/10.1023/a:1026543900054"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-88690-7_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008232602", 
              "https://doi.org/10.1007/978-3-540-88690-7_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-88690-7_3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008232602", 
              "https://doi.org/10.1007/978-3-540-88690-7_3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11042-010-0717-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012734820", 
              "https://doi.org/10.1007/s11042-010-0717-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1467-8659.2011.01881.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013572484"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jvcir.2016.12.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015183131"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2647868.2654922", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021794998"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2382336.2382376", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033733688"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1467-8659.2009.01503.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035006405"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1467-8659.2009.01503.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035006405"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.image.2015.08.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047315385"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/76.927424", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061222541"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/jetcas.2014.2298919", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061280501"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/jstsp.2012.2211996", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061338198"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/jstsp.2014.2311884", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061338349"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/mmul.2010.24", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061410207"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tip.2003.819861", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061640964"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tip.2012.2199126", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061643228"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tip.2016.2585884", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061645095"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tmm.2009.2021781", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061697641"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tvcg.2016.2517641", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061814669"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1276377.1276390", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063153811"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1409060.1409071", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063155258"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1618452.1618471", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063156951"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/1618452.1618472", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063156952"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/2010324.1964935", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063159710"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/qomex.2015.7148090", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093462847"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iccv.2007.4409010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093534686"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icig.2013.92", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093870739"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icme.2008.4607705", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094185616"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icip.2010.5653559", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094210766"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/cvpr.2008.4587842", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095194805"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/wacv.2011.5711477", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095335101"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icmew.2014.6890548", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095488021"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iccv.2009.5459199", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095611589"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-06", 
        "datePublishedReg": "2018-06-01", 
        "description": "Content-aware retargeting methods are used to adjust images to different resolutions and aspect ratios with low deformation and information loss in salient regions. Effective objective quality assessment of retargeted images can provide a way to improve retargeting methods. The non-uniform geometrical degradations caused by retargeting algorithms make it impossible to use traditional image quality assessment metrics for retargeted images. Although some quality evaluation methods have been proposed till now, the resulted quality scores are not well correlated with the subjective ones. In this paper we propose a pyramidal global-to-local pooling method to combine pixel/block deformation measures. In each level of locality, the Euclidean distance between the retargeted and original image is used as an individual feature. Therefore, in addition to the global summation, assessment of local deformations, contributes toward better quality evaluation. Learning a regression model based on the extracted features results in better performance compared to relevant existing retargeted image quality methods.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11042-017-4994-1", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1044869", 
            "issn": [
              "1380-7501", 
              "1573-7721"
            ], 
            "name": "Multimedia Tools and Applications", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "11", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "77"
          }
        ], 
        "name": "Pyramidal modeling of geometric distortions for retargeted image quality evaluation", 
        "pagination": "13799-13820", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "083cd6512200e2a6c598349316aa53ec45a9c3fc988a6c31fb542fb6ab32bb08"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11042-017-4994-1"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1090927207"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11042-017-4994-1", 
          "https://app.dimensions.ai/details/publication/pub.1090927207"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:57", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89807_00000003.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs11042-017-4994-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11042-017-4994-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11042-017-4994-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11042-017-4994-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11042-017-4994-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    213 TRIPLES      21 PREDICATES      62 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11042-017-4994-1 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N1735d1d7c8774764889b121167b69835
    4 schema:citation sg:pub.10.1007/978-3-540-88690-7_3
    5 sg:pub.10.1007/s11042-010-0717-6
    6 sg:pub.10.1023/a:1026543900054
    7 https://doi.org/10.1016/j.image.2015.08.001
    8 https://doi.org/10.1016/j.jvcir.2016.12.011
    9 https://doi.org/10.1109/76.927424
    10 https://doi.org/10.1109/cvpr.2008.4587842
    11 https://doi.org/10.1109/iccv.2007.4409010
    12 https://doi.org/10.1109/iccv.2009.5459199
    13 https://doi.org/10.1109/icig.2013.92
    14 https://doi.org/10.1109/icip.2010.5653559
    15 https://doi.org/10.1109/icme.2008.4607705
    16 https://doi.org/10.1109/icmew.2014.6890548
    17 https://doi.org/10.1109/jetcas.2014.2298919
    18 https://doi.org/10.1109/jstsp.2012.2211996
    19 https://doi.org/10.1109/jstsp.2014.2311884
    20 https://doi.org/10.1109/mmul.2010.24
    21 https://doi.org/10.1109/qomex.2015.7148090
    22 https://doi.org/10.1109/tip.2003.819861
    23 https://doi.org/10.1109/tip.2012.2199126
    24 https://doi.org/10.1109/tip.2016.2585884
    25 https://doi.org/10.1109/tmm.2009.2021781
    26 https://doi.org/10.1109/tvcg.2016.2517641
    27 https://doi.org/10.1109/wacv.2011.5711477
    28 https://doi.org/10.1111/j.1467-8659.2009.01503.x
    29 https://doi.org/10.1111/j.1467-8659.2011.01881.x
    30 https://doi.org/10.1145/1276377.1276390
    31 https://doi.org/10.1145/1409060.1409071
    32 https://doi.org/10.1145/1457515.1409071
    33 https://doi.org/10.1145/1576246.1531329
    34 https://doi.org/10.1145/1618452.1618471
    35 https://doi.org/10.1145/1618452.1618472
    36 https://doi.org/10.1145/2010324.1964935
    37 https://doi.org/10.1145/2382336.2382376
    38 https://doi.org/10.1145/2647868.2654922
    39 schema:datePublished 2018-06
    40 schema:datePublishedReg 2018-06-01
    41 schema:description Content-aware retargeting methods are used to adjust images to different resolutions and aspect ratios with low deformation and information loss in salient regions. Effective objective quality assessment of retargeted images can provide a way to improve retargeting methods. The non-uniform geometrical degradations caused by retargeting algorithms make it impossible to use traditional image quality assessment metrics for retargeted images. Although some quality evaluation methods have been proposed till now, the resulted quality scores are not well correlated with the subjective ones. In this paper we propose a pyramidal global-to-local pooling method to combine pixel/block deformation measures. In each level of locality, the Euclidean distance between the retargeted and original image is used as an individual feature. Therefore, in addition to the global summation, assessment of local deformations, contributes toward better quality evaluation. Learning a regression model based on the extracted features results in better performance compared to relevant existing retargeted image quality methods.
    42 schema:genre research_article
    43 schema:inLanguage en
    44 schema:isAccessibleForFree false
    45 schema:isPartOf N191ddf9ce5914c1fa5624e751728457a
    46 N307ebcb7d65b405cac23cc416f73960b
    47 sg:journal.1044869
    48 schema:name Pyramidal modeling of geometric distortions for retargeted image quality evaluation
    49 schema:pagination 13799-13820
    50 schema:productId N6c8479788e7a44818a15bcb2d0da0aac
    51 Nc0fc829133e04743bdf528aee78a7c8b
    52 Nf7728a15c64a4526863d85af186ba296
    53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090927207
    54 https://doi.org/10.1007/s11042-017-4994-1
    55 schema:sdDatePublished 2019-04-11T09:57
    56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    57 schema:sdPublisher Ne2556dae95fa47a5804c99e7969f24ee
    58 schema:url https://link.springer.com/10.1007%2Fs11042-017-4994-1
    59 sgo:license sg:explorer/license/
    60 sgo:sdDataset articles
    61 rdf:type schema:ScholarlyArticle
    62 N1735d1d7c8774764889b121167b69835 rdf:first sg:person.010116304313.70
    63 rdf:rest Nb890ee8971254e6798310643dfb116ae
    64 N191ddf9ce5914c1fa5624e751728457a schema:volumeNumber 77
    65 rdf:type schema:PublicationVolume
    66 N307ebcb7d65b405cac23cc416f73960b schema:issueNumber 11
    67 rdf:type schema:PublicationIssue
    68 N6c8479788e7a44818a15bcb2d0da0aac schema:name readcube_id
    69 schema:value 083cd6512200e2a6c598349316aa53ec45a9c3fc988a6c31fb542fb6ab32bb08
    70 rdf:type schema:PropertyValue
    71 N8a9faba5f764456aa87b617f5e3fe6a6 rdf:first sg:person.01220261175.74
    72 rdf:rest rdf:nil
    73 Nb890ee8971254e6798310643dfb116ae rdf:first sg:person.0757651554.10
    74 rdf:rest Nbcf3cf328ea4411d9d260a84c2e48eb6
    75 Nbcf3cf328ea4411d9d260a84c2e48eb6 rdf:first sg:person.013110672657.03
    76 rdf:rest Ndcad83c8cf0e4eccb069208ec93b2196
    77 Nc0fc829133e04743bdf528aee78a7c8b schema:name dimensions_id
    78 schema:value pub.1090927207
    79 rdf:type schema:PropertyValue
    80 Ndcad83c8cf0e4eccb069208ec93b2196 rdf:first sg:person.011756431405.99
    81 rdf:rest Ne7757fb3d3da4455aac1f167c72160ab
    82 Ne2556dae95fa47a5804c99e7969f24ee schema:name Springer Nature - SN SciGraph project
    83 rdf:type schema:Organization
    84 Ne7757fb3d3da4455aac1f167c72160ab rdf:first sg:person.01003746051.15
    85 rdf:rest N8a9faba5f764456aa87b617f5e3fe6a6
    86 Nf7728a15c64a4526863d85af186ba296 schema:name doi
    87 schema:value 10.1007/s11042-017-4994-1
    88 rdf:type schema:PropertyValue
    89 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    90 schema:name Information and Computing Sciences
    91 rdf:type schema:DefinedTerm
    92 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    93 schema:name Artificial Intelligence and Image Processing
    94 rdf:type schema:DefinedTerm
    95 sg:journal.1044869 schema:issn 1380-7501
    96 1573-7721
    97 schema:name Multimedia Tools and Applications
    98 rdf:type schema:Periodical
    99 sg:person.01003746051.15 schema:affiliation https://www.grid.ac/institutes/grid.59025.3b
    100 schema:familyName Lin
    101 schema:givenName Weisi
    102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01003746051.15
    103 rdf:type schema:Person
    104 sg:person.010116304313.70 schema:affiliation https://www.grid.ac/institutes/grid.411751.7
    105 schema:familyName Karimi
    106 schema:givenName Maryam
    107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010116304313.70
    108 rdf:type schema:Person
    109 sg:person.011756431405.99 schema:affiliation https://www.grid.ac/institutes/grid.214458.e
    110 schema:familyName Soroushmehr
    111 schema:givenName S. M. Reza
    112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011756431405.99
    113 rdf:type schema:Person
    114 sg:person.01220261175.74 schema:affiliation https://www.grid.ac/institutes/grid.214458.e
    115 schema:familyName Najarian
    116 schema:givenName Kayvan
    117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01220261175.74
    118 rdf:type schema:Person
    119 sg:person.013110672657.03 schema:affiliation https://www.grid.ac/institutes/grid.411751.7
    120 schema:familyName Karimi
    121 schema:givenName Nader
    122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013110672657.03
    123 rdf:type schema:Person
    124 sg:person.0757651554.10 schema:affiliation https://www.grid.ac/institutes/grid.214458.e
    125 schema:familyName Samavi
    126 schema:givenName Shadrokh
    127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0757651554.10
    128 rdf:type schema:Person
    129 sg:pub.10.1007/978-3-540-88690-7_3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008232602
    130 https://doi.org/10.1007/978-3-540-88690-7_3
    131 rdf:type schema:CreativeWork
    132 sg:pub.10.1007/s11042-010-0717-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012734820
    133 https://doi.org/10.1007/s11042-010-0717-6
    134 rdf:type schema:CreativeWork
    135 sg:pub.10.1023/a:1026543900054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006187360
    136 https://doi.org/10.1023/a:1026543900054
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1016/j.image.2015.08.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047315385
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1016/j.jvcir.2016.12.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015183131
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1109/76.927424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061222541
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1109/cvpr.2008.4587842 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095194805
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1109/iccv.2007.4409010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093534686
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1109/iccv.2009.5459199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095611589
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1109/icig.2013.92 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093870739
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1109/icip.2010.5653559 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094210766
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1109/icme.2008.4607705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094185616
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1109/icmew.2014.6890548 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095488021
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1109/jetcas.2014.2298919 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061280501
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1109/jstsp.2012.2211996 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061338198
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1109/jstsp.2014.2311884 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061338349
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1109/mmul.2010.24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061410207
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1109/qomex.2015.7148090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093462847
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1109/tip.2003.819861 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061640964
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1109/tip.2012.2199126 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061643228
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1109/tip.2016.2585884 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061645095
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1109/tmm.2009.2021781 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061697641
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.1109/tvcg.2016.2517641 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061814669
    177 rdf:type schema:CreativeWork
    178 https://doi.org/10.1109/wacv.2011.5711477 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095335101
    179 rdf:type schema:CreativeWork
    180 https://doi.org/10.1111/j.1467-8659.2009.01503.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1035006405
    181 rdf:type schema:CreativeWork
    182 https://doi.org/10.1111/j.1467-8659.2011.01881.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1013572484
    183 rdf:type schema:CreativeWork
    184 https://doi.org/10.1145/1276377.1276390 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063153811
    185 rdf:type schema:CreativeWork
    186 https://doi.org/10.1145/1409060.1409071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063155258
    187 rdf:type schema:CreativeWork
    188 https://doi.org/10.1145/1457515.1409071 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002271258
    189 rdf:type schema:CreativeWork
    190 https://doi.org/10.1145/1576246.1531329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002273007
    191 rdf:type schema:CreativeWork
    192 https://doi.org/10.1145/1618452.1618471 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063156951
    193 rdf:type schema:CreativeWork
    194 https://doi.org/10.1145/1618452.1618472 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063156952
    195 rdf:type schema:CreativeWork
    196 https://doi.org/10.1145/2010324.1964935 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063159710
    197 rdf:type schema:CreativeWork
    198 https://doi.org/10.1145/2382336.2382376 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033733688
    199 rdf:type schema:CreativeWork
    200 https://doi.org/10.1145/2647868.2654922 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021794998
    201 rdf:type schema:CreativeWork
    202 https://www.grid.ac/institutes/grid.214458.e schema:alternateName University of Michigan–Ann Arbor
    203 schema:name Department of Computational Medicine and Bioinformatics, University of Michigan, 48109, Ann Arbor, USA
    204 Department of Electrical and Computer Engineering, Isfahan University of Technology, 84156-83111, Isfahan, Iran
    205 Department of Emergency Medicine, University of Michigan, 48109, Ann Arbor, USA
    206 Michigan Center for Integrative Research in Critical Care, University of Michigan, 48109, Ann Arbor, USA
    207 rdf:type schema:Organization
    208 https://www.grid.ac/institutes/grid.411751.7 schema:alternateName Isfahan University of Technology
    209 schema:name Department of Electrical and Computer Engineering, Isfahan University of Technology, 84156-83111, Isfahan, Iran
    210 rdf:type schema:Organization
    211 https://www.grid.ac/institutes/grid.59025.3b schema:alternateName Nanyang Technological University
    212 schema:name School of Computer Engineering, Nanyang Technological University, 639798, Singapore, Singapore
    213 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...