Coupled source domain targetized with updating tag vectors for micro-expression recognition View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-07-22

AUTHORS

Xuena Zhu, Xianye Ben, Shigang Liu, Rui Yan, Weixiao Meng

ABSTRACT

Micro-expression has raised increasing attention for analyzing human inner emotions. However, most micro-expression recognition methods are developed with specific feature representations and extraction methods, such as local binary pattern on three orthogonal planes (LBP-TOP) and optical flow. The performance in such micro-expression recognition models is not high due to the limited training samples and the unequal size of the sample category. To improve the performance, we present a novel algorithm, named coupled source domain targetized with updating tag vectors, and we apply it to the micro-expression recognition. This method leverages rich speech data to enhance micro-expression recognition by transferring learning from the speech to the micro-expression recognition. The method highlights are: it simultaneously projects micro-expression samples and speech samples into a common space, then minimizes the reconstruction error between the speech and micro-expression samples, with an updating tag vectors added in the reconstruction process. It performs recognition by using dictionary learning together with support vector machine (SVM). Experimental results on the CASIA Chinese emotional corpus and CASME II micro-expression database demonstrate the effectiveness of our method. More... »

PAGES

3105-3124

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11042-017-4943-z

DOI

http://dx.doi.org/10.1007/s11042-017-4943-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1090866532


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0803", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computer Software", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Information Science and Engineering, Shandong University, No.27, Shanda South Road, 250100, Jinan, China", 
          "id": "http://www.grid.ac/institutes/grid.27255.37", 
          "name": [
            "School of Information Science and Engineering, Shandong University, No.27, Shanda South Road, 250100, Jinan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhu", 
        "givenName": "Xuena", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Information Science and Engineering, Shandong University, No.27, Shanda South Road, 250100, Jinan, China", 
          "id": "http://www.grid.ac/institutes/grid.27255.37", 
          "name": [
            "School of Information Science and Engineering, Shandong University, No.27, Shanda South Road, 250100, Jinan, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ben", 
        "givenName": "Xianye", 
        "id": "sg:person.013273076417.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013273076417.79"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Computer Science, Shaanxi Normal University, 710062, Xi\u2019an, China", 
          "id": "http://www.grid.ac/institutes/grid.412498.2", 
          "name": [
            "School of Computer Science, Shaanxi Normal University, 710062, Xi\u2019an, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Shigang", 
        "id": "sg:person.014061025317.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014061025317.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Computer Science Department, Rensselaer Polytechnic Institute, 12180, Troy, NY, USA", 
          "id": "http://www.grid.ac/institutes/grid.33647.35", 
          "name": [
            "Computer Science Department, Rensselaer Polytechnic Institute, 12180, Troy, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yan", 
        "givenName": "Rui", 
        "id": "sg:person.010226205456.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010226205456.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Electronics and Information Engineering, Harbin Institute of Technology, 150080, Harbin, China", 
          "id": "http://www.grid.ac/institutes/grid.19373.3f", 
          "name": [
            "School of Electronics and Information Engineering, Harbin Institute of Technology, 150080, Harbin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Meng", 
        "givenName": "Weixiao", 
        "id": "sg:person.012732030521.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012732030521.86"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-4684-6045-2_14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044150439", 
          "https://doi.org/10.1007/978-1-4684-6045-2_14"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1472-6920-9-47", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018947543", 
          "https://doi.org/10.1186/1472-6920-9-47"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1023237014909", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047556844", 
          "https://doi.org/10.1023/a:1023237014909"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-51811-4_52", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032400930", 
          "https://doi.org/10.1007/978-3-319-51811-4_52"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-015-1834-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021334980", 
          "https://doi.org/10.1007/s00521-015-1834-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11263-013-0693-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012048971", 
          "https://doi.org/10.1007/s11263-013-0693-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11263-014-0781-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031640797", 
          "https://doi.org/10.1007/s11263-014-0781-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11063-013-9288-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039212297", 
          "https://doi.org/10.1007/s11063-013-9288-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00521-015-2031-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009316591", 
          "https://doi.org/10.1007/s00521-015-2031-8"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-07-22", 
    "datePublishedReg": "2017-07-22", 
    "description": "Micro-expression has raised increasing attention for analyzing human inner emotions. However, most micro-expression recognition methods are developed with specific feature representations and extraction methods, such as local binary pattern on three orthogonal planes (LBP-TOP) and optical flow. The performance in such micro-expression recognition models is not high due to the limited training samples and the unequal size of the sample category. To improve the performance, we present a novel algorithm, named coupled source domain targetized with updating tag vectors, and we apply it to the micro-expression recognition. This method leverages rich speech data to enhance micro-expression recognition by transferring learning from the speech to the micro-expression recognition. The method highlights are: it simultaneously projects micro-expression samples and speech samples into a common space, then minimizes the reconstruction error between the speech and micro-expression samples, with an updating tag vectors added in the reconstruction process. It performs recognition by using dictionary learning together with support vector machine (SVM). Experimental results on the CASIA Chinese emotional corpus and CASME II micro-expression database demonstrate the effectiveness of our method.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11042-017-4943-z", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8306424", 
        "type": "MonetaryGrant"
      }, 
      {
        "id": "sg:grant.8301585", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1044869", 
        "issn": [
          "1380-7501", 
          "1573-7721"
        ], 
        "name": "Multimedia Tools and Applications", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "77"
      }
    ], 
    "keywords": [
      "micro-expression recognition", 
      "micro-expression samples", 
      "specific feature representation", 
      "emotional corpus", 
      "micro-expression recognition methods", 
      "inner emotions", 
      "speech samples", 
      "source domain", 
      "tag vectors", 
      "micro-expression databases", 
      "speech data", 
      "recognition model", 
      "feature representation", 
      "speech", 
      "recognition", 
      "limited training samples", 
      "emotions", 
      "recognition method", 
      "training samples", 
      "methods highlights", 
      "support vector machine", 
      "corpus", 
      "attention", 
      "representation", 
      "performance", 
      "domain", 
      "optical flow", 
      "samples", 
      "common space", 
      "categories", 
      "vector machine", 
      "dictionary", 
      "binary pattern", 
      "sample categories", 
      "effectiveness", 
      "highlights", 
      "Local Binary Pattern", 
      "error", 
      "patterns", 
      "process", 
      "reconstruction error", 
      "model", 
      "machine", 
      "results", 
      "data", 
      "experimental results", 
      "method", 
      "space", 
      "reconstruction process", 
      "orthogonal planes", 
      "database", 
      "extraction method", 
      "vector", 
      "size", 
      "unequal size", 
      "novel algorithm", 
      "algorithm", 
      "flow", 
      "plane"
    ], 
    "name": "Coupled source domain targetized with updating tag vectors for micro-expression recognition", 
    "pagination": "3105-3124", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1090866532"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11042-017-4943-z"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11042-017-4943-z", 
      "https://app.dimensions.ai/details/publication/pub.1090866532"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_716.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11042-017-4943-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11042-017-4943-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11042-017-4943-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11042-017-4943-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11042-017-4943-z'


 

This table displays all metadata directly associated to this object as RDF triples.

200 TRIPLES      21 PREDICATES      94 URIs      75 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11042-017-4943-z schema:about anzsrc-for:08
2 anzsrc-for:0801
3 anzsrc-for:0803
4 anzsrc-for:0806
5 schema:author N48bfd49bc12f4130aaae7765a92d9daa
6 schema:citation sg:pub.10.1007/978-1-4684-6045-2_14
7 sg:pub.10.1007/978-3-319-51811-4_52
8 sg:pub.10.1007/s00521-015-1834-y
9 sg:pub.10.1007/s00521-015-2031-8
10 sg:pub.10.1007/s11063-013-9288-7
11 sg:pub.10.1007/s11263-013-0693-1
12 sg:pub.10.1007/s11263-014-0781-x
13 sg:pub.10.1023/a:1023237014909
14 sg:pub.10.1186/1472-6920-9-47
15 schema:datePublished 2017-07-22
16 schema:datePublishedReg 2017-07-22
17 schema:description Micro-expression has raised increasing attention for analyzing human inner emotions. However, most micro-expression recognition methods are developed with specific feature representations and extraction methods, such as local binary pattern on three orthogonal planes (LBP-TOP) and optical flow. The performance in such micro-expression recognition models is not high due to the limited training samples and the unequal size of the sample category. To improve the performance, we present a novel algorithm, named coupled source domain targetized with updating tag vectors, and we apply it to the micro-expression recognition. This method leverages rich speech data to enhance micro-expression recognition by transferring learning from the speech to the micro-expression recognition. The method highlights are: it simultaneously projects micro-expression samples and speech samples into a common space, then minimizes the reconstruction error between the speech and micro-expression samples, with an updating tag vectors added in the reconstruction process. It performs recognition by using dictionary learning together with support vector machine (SVM). Experimental results on the CASIA Chinese emotional corpus and CASME II micro-expression database demonstrate the effectiveness of our method.
18 schema:genre article
19 schema:isAccessibleForFree false
20 schema:isPartOf N0732c8eb33ad416695cc7118dcc21c61
21 N845e3a687dfd48ae82a05b9f1b21d86d
22 sg:journal.1044869
23 schema:keywords Local Binary Pattern
24 algorithm
25 attention
26 binary pattern
27 categories
28 common space
29 corpus
30 data
31 database
32 dictionary
33 domain
34 effectiveness
35 emotional corpus
36 emotions
37 error
38 experimental results
39 extraction method
40 feature representation
41 flow
42 highlights
43 inner emotions
44 limited training samples
45 machine
46 method
47 methods highlights
48 micro-expression databases
49 micro-expression recognition
50 micro-expression recognition methods
51 micro-expression samples
52 model
53 novel algorithm
54 optical flow
55 orthogonal planes
56 patterns
57 performance
58 plane
59 process
60 recognition
61 recognition method
62 recognition model
63 reconstruction error
64 reconstruction process
65 representation
66 results
67 sample categories
68 samples
69 size
70 source domain
71 space
72 specific feature representation
73 speech
74 speech data
75 speech samples
76 support vector machine
77 tag vectors
78 training samples
79 unequal size
80 vector
81 vector machine
82 schema:name Coupled source domain targetized with updating tag vectors for micro-expression recognition
83 schema:pagination 3105-3124
84 schema:productId N0c0a050094624fa8be75b51fd3cfc7c6
85 Ndecdd9637dbb48d3a945657ad4362bec
86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090866532
87 https://doi.org/10.1007/s11042-017-4943-z
88 schema:sdDatePublished 2022-12-01T06:35
89 schema:sdLicense https://scigraph.springernature.com/explorer/license/
90 schema:sdPublisher N3859d4cbcb0446eca02a884ab9222ee6
91 schema:url https://doi.org/10.1007/s11042-017-4943-z
92 sgo:license sg:explorer/license/
93 sgo:sdDataset articles
94 rdf:type schema:ScholarlyArticle
95 N0732c8eb33ad416695cc7118dcc21c61 schema:volumeNumber 77
96 rdf:type schema:PublicationVolume
97 N0c0a050094624fa8be75b51fd3cfc7c6 schema:name doi
98 schema:value 10.1007/s11042-017-4943-z
99 rdf:type schema:PropertyValue
100 N1f91422801a743a38e3c139db16b9b30 rdf:first sg:person.012732030521.86
101 rdf:rest rdf:nil
102 N3859d4cbcb0446eca02a884ab9222ee6 schema:name Springer Nature - SN SciGraph project
103 rdf:type schema:Organization
104 N48bfd49bc12f4130aaae7765a92d9daa rdf:first N4dc07246b159465ca5e35a82c78270e3
105 rdf:rest Nf3a90a0e0b344296a591c10f7859ad79
106 N4dc07246b159465ca5e35a82c78270e3 schema:affiliation grid-institutes:grid.27255.37
107 schema:familyName Zhu
108 schema:givenName Xuena
109 rdf:type schema:Person
110 N6399917baa52422abf8b26e925fc84d9 rdf:first sg:person.010226205456.63
111 rdf:rest N1f91422801a743a38e3c139db16b9b30
112 N845e3a687dfd48ae82a05b9f1b21d86d schema:issueNumber 3
113 rdf:type schema:PublicationIssue
114 N942f626e9f424dc28fbe51f5608602d3 rdf:first sg:person.014061025317.59
115 rdf:rest N6399917baa52422abf8b26e925fc84d9
116 Ndecdd9637dbb48d3a945657ad4362bec schema:name dimensions_id
117 schema:value pub.1090866532
118 rdf:type schema:PropertyValue
119 Nf3a90a0e0b344296a591c10f7859ad79 rdf:first sg:person.013273076417.79
120 rdf:rest N942f626e9f424dc28fbe51f5608602d3
121 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
122 schema:name Information and Computing Sciences
123 rdf:type schema:DefinedTerm
124 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
125 schema:name Artificial Intelligence and Image Processing
126 rdf:type schema:DefinedTerm
127 anzsrc-for:0803 schema:inDefinedTermSet anzsrc-for:
128 schema:name Computer Software
129 rdf:type schema:DefinedTerm
130 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
131 schema:name Information Systems
132 rdf:type schema:DefinedTerm
133 sg:grant.8301585 http://pending.schema.org/fundedItem sg:pub.10.1007/s11042-017-4943-z
134 rdf:type schema:MonetaryGrant
135 sg:grant.8306424 http://pending.schema.org/fundedItem sg:pub.10.1007/s11042-017-4943-z
136 rdf:type schema:MonetaryGrant
137 sg:journal.1044869 schema:issn 1380-7501
138 1573-7721
139 schema:name Multimedia Tools and Applications
140 schema:publisher Springer Nature
141 rdf:type schema:Periodical
142 sg:person.010226205456.63 schema:affiliation grid-institutes:grid.33647.35
143 schema:familyName Yan
144 schema:givenName Rui
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010226205456.63
146 rdf:type schema:Person
147 sg:person.012732030521.86 schema:affiliation grid-institutes:grid.19373.3f
148 schema:familyName Meng
149 schema:givenName Weixiao
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012732030521.86
151 rdf:type schema:Person
152 sg:person.013273076417.79 schema:affiliation grid-institutes:grid.27255.37
153 schema:familyName Ben
154 schema:givenName Xianye
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013273076417.79
156 rdf:type schema:Person
157 sg:person.014061025317.59 schema:affiliation grid-institutes:grid.412498.2
158 schema:familyName Liu
159 schema:givenName Shigang
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014061025317.59
161 rdf:type schema:Person
162 sg:pub.10.1007/978-1-4684-6045-2_14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044150439
163 https://doi.org/10.1007/978-1-4684-6045-2_14
164 rdf:type schema:CreativeWork
165 sg:pub.10.1007/978-3-319-51811-4_52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032400930
166 https://doi.org/10.1007/978-3-319-51811-4_52
167 rdf:type schema:CreativeWork
168 sg:pub.10.1007/s00521-015-1834-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1021334980
169 https://doi.org/10.1007/s00521-015-1834-y
170 rdf:type schema:CreativeWork
171 sg:pub.10.1007/s00521-015-2031-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009316591
172 https://doi.org/10.1007/s00521-015-2031-8
173 rdf:type schema:CreativeWork
174 sg:pub.10.1007/s11063-013-9288-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039212297
175 https://doi.org/10.1007/s11063-013-9288-7
176 rdf:type schema:CreativeWork
177 sg:pub.10.1007/s11263-013-0693-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012048971
178 https://doi.org/10.1007/s11263-013-0693-1
179 rdf:type schema:CreativeWork
180 sg:pub.10.1007/s11263-014-0781-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1031640797
181 https://doi.org/10.1007/s11263-014-0781-x
182 rdf:type schema:CreativeWork
183 sg:pub.10.1023/a:1023237014909 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047556844
184 https://doi.org/10.1023/a:1023237014909
185 rdf:type schema:CreativeWork
186 sg:pub.10.1186/1472-6920-9-47 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018947543
187 https://doi.org/10.1186/1472-6920-9-47
188 rdf:type schema:CreativeWork
189 grid-institutes:grid.19373.3f schema:alternateName School of Electronics and Information Engineering, Harbin Institute of Technology, 150080, Harbin, China
190 schema:name School of Electronics and Information Engineering, Harbin Institute of Technology, 150080, Harbin, China
191 rdf:type schema:Organization
192 grid-institutes:grid.27255.37 schema:alternateName School of Information Science and Engineering, Shandong University, No.27, Shanda South Road, 250100, Jinan, China
193 schema:name School of Information Science and Engineering, Shandong University, No.27, Shanda South Road, 250100, Jinan, China
194 rdf:type schema:Organization
195 grid-institutes:grid.33647.35 schema:alternateName Computer Science Department, Rensselaer Polytechnic Institute, 12180, Troy, NY, USA
196 schema:name Computer Science Department, Rensselaer Polytechnic Institute, 12180, Troy, NY, USA
197 rdf:type schema:Organization
198 grid-institutes:grid.412498.2 schema:alternateName School of Computer Science, Shaanxi Normal University, 710062, Xi’an, China
199 schema:name School of Computer Science, Shaanxi Normal University, 710062, Xi’an, China
200 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...