Progressive visual secret sharing for general access structure with multiple decryptions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-02-09

AUTHORS

Xuehu Yan, Yuliang Lu

ABSTRACT

Visual secret sharing (VSS) for general access structure (GAS) owns wider applications than (k,n) threshold VSS. VSS with multiple decryptions realizes the functionalities of both OR-based VSS (OVSS) and XOR-based VSS (XVSS), which can broaden the applications compared to one recovery method-based VSS. In this paper, we propose a progressive VSS (PVSS) scheme for GAS with the features of both OR and XOR decryptions based on random grid (RG). The different regions of the secret image and corresponding genearted random bits are employed to gain progressive property as well as GAS with OR and XOR decryptions. For the qualified sets, we can reconstruct the secret by stacking. On the other hand, if a device with XOR operation is available, we can improve the visual quality of the recovered secret image as well as reconstruct the secret image losslessly when we collect all the n shares. In addition, our scheme has neither pixel expansion nor codebook design due to RG. The effectiveness of the proposed scheme is shown in terms of experimental results and analyses. More... »

PAGES

2653-2672

References to SciGraph publications

  • 2013-07-05. An Authentication Scheme for Secure Access to Healthcare Services in JOURNAL OF MEDICAL SYSTEMS
  • 1995. Visual cryptography in ADVANCES IN CRYPTOLOGY — EUROCRYPT'94
  • 2015-10-27. An enhanced threshold visual secret sharing based on random grids in JOURNAL OF REAL-TIME IMAGE PROCESSING
  • 2005-10. XOR-based Visual Cryptography Schemes in DESIGNS, CODES AND CRYPTOGRAPHY
  • 2014-06-13. Random grids-based visual secret sharing with improved visual quality via error diffusion in MULTIMEDIA TOOLS AND APPLICATIONS
  • 2014-07-09. Visual Cryptography and Random Grids Schemes in DIGITAL-FORENSICS AND WATERMARKING
  • 2013-12-24. Visual secret sharing based on random grids with abilities of AND and XOR lossless recovery in MULTIMEDIA TOOLS AND APPLICATIONS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11042-017-4421-7

    DOI

    http://dx.doi.org/10.1007/s11042-017-4421-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1083744330


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Hefei Electronic Engineering Institute, 230037, Hefei, China", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Hefei Electronic Engineering Institute, 230037, Hefei, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Yan", 
            "givenName": "Xuehu", 
            "id": "sg:person.010467364517.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010467364517.31"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Hefei Electronic Engineering Institute, 230037, Hefei, China", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Hefei Electronic Engineering Institute, 230037, Hefei, China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lu", 
            "givenName": "Yuliang", 
            "id": "sg:person.015112370271.93", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015112370271.93"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s10916-013-9954-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029190165", 
              "https://doi.org/10.1007/s10916-013-9954-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11554-015-0540-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022432477", 
              "https://doi.org/10.1007/s11554-015-0540-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11042-014-2080-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015360804", 
              "https://doi.org/10.1007/s11042-014-2080-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0053419", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008839066", 
              "https://doi.org/10.1007/bfb0053419"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-43886-2_8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018728677", 
              "https://doi.org/10.1007/978-3-662-43886-2_8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10623-004-3816-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027834328", 
              "https://doi.org/10.1007/s10623-004-3816-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11042-013-1784-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021413130", 
              "https://doi.org/10.1007/s11042-013-1784-2"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-02-09", 
        "datePublishedReg": "2017-02-09", 
        "description": "Visual secret sharing (VSS) for general access structure (GAS) owns wider applications than (k,n) threshold VSS. VSS with multiple decryptions realizes the functionalities of both OR-based VSS (OVSS) and XOR-based VSS (XVSS), which can broaden the applications compared to one recovery method-based VSS. In this paper, we propose a progressive VSS (PVSS) scheme for GAS with the features of both OR and XOR decryptions based on random grid (RG). The different regions of the secret image and corresponding genearted random bits are employed to gain progressive property as well as GAS with OR and XOR decryptions. For the qualified sets, we can reconstruct the secret by stacking. On the other hand, if a device with XOR operation is available, we can improve the visual quality of the recovered secret image as well as reconstruct the secret image losslessly when we collect all the n shares. In addition, our scheme has neither pixel expansion nor codebook design due to RG. The effectiveness of the proposed scheme is shown in terms of experimental results and analyses.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11042-017-4421-7", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.8304044", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1044869", 
            "issn": [
              "1380-7501", 
              "1573-7721"
            ], 
            "name": "Multimedia Tools and Applications", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "77"
          }
        ], 
        "keywords": [
          "visual secret sharing", 
          "general access structures", 
          "secret image", 
          "random grids", 
          "XOR decryptions", 
          "multiple decryptions", 
          "secret sharing", 
          "access structure", 
          "threshold visual secret sharing", 
          "recovered secret image", 
          "pixel expansion", 
          "qualified set", 
          "n shares", 
          "VSS scheme", 
          "XOR operation", 
          "decryption", 
          "visual quality", 
          "progressive property", 
          "codebook design", 
          "random bits", 
          "experimental results", 
          "sharing", 
          "images", 
          "scheme", 
          "wide application", 
          "XOR", 
          "applications", 
          "bits", 
          "secrets", 
          "functionality", 
          "grid", 
          "set", 
          "effectiveness", 
          "devices", 
          "features", 
          "operation", 
          "design", 
          "structure", 
          "quality", 
          "properties", 
          "terms", 
          "hand", 
          "share", 
          "results", 
          "different regions", 
          "expansion", 
          "addition", 
          "analysis", 
          "region", 
          "corresponding", 
          "paper"
        ], 
        "name": "Progressive visual secret sharing for general access structure with multiple decryptions", 
        "pagination": "2653-2672", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1083744330"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11042-017-4421-7"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11042-017-4421-7", 
          "https://app.dimensions.ai/details/publication/pub.1083744330"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:36", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_736.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11042-017-4421-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11042-017-4421-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11042-017-4421-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11042-017-4421-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11042-017-4421-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    145 TRIPLES      21 PREDICATES      82 URIs      67 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11042-017-4421-7 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N562a74a7534744808cc40fa12d49339e
    4 schema:citation sg:pub.10.1007/978-3-662-43886-2_8
    5 sg:pub.10.1007/bfb0053419
    6 sg:pub.10.1007/s10623-004-3816-4
    7 sg:pub.10.1007/s10916-013-9954-3
    8 sg:pub.10.1007/s11042-013-1784-2
    9 sg:pub.10.1007/s11042-014-2080-5
    10 sg:pub.10.1007/s11554-015-0540-4
    11 schema:datePublished 2017-02-09
    12 schema:datePublishedReg 2017-02-09
    13 schema:description Visual secret sharing (VSS) for general access structure (GAS) owns wider applications than (k,n) threshold VSS. VSS with multiple decryptions realizes the functionalities of both OR-based VSS (OVSS) and XOR-based VSS (XVSS), which can broaden the applications compared to one recovery method-based VSS. In this paper, we propose a progressive VSS (PVSS) scheme for GAS with the features of both OR and XOR decryptions based on random grid (RG). The different regions of the secret image and corresponding genearted random bits are employed to gain progressive property as well as GAS with OR and XOR decryptions. For the qualified sets, we can reconstruct the secret by stacking. On the other hand, if a device with XOR operation is available, we can improve the visual quality of the recovered secret image as well as reconstruct the secret image losslessly when we collect all the n shares. In addition, our scheme has neither pixel expansion nor codebook design due to RG. The effectiveness of the proposed scheme is shown in terms of experimental results and analyses.
    14 schema:genre article
    15 schema:isAccessibleForFree false
    16 schema:isPartOf N512520de505e4fcb988e9f3771201f6e
    17 N72b197e0635e4676bd0e02e525a81dbf
    18 sg:journal.1044869
    19 schema:keywords VSS scheme
    20 XOR
    21 XOR decryptions
    22 XOR operation
    23 access structure
    24 addition
    25 analysis
    26 applications
    27 bits
    28 codebook design
    29 corresponding
    30 decryption
    31 design
    32 devices
    33 different regions
    34 effectiveness
    35 expansion
    36 experimental results
    37 features
    38 functionality
    39 general access structures
    40 grid
    41 hand
    42 images
    43 multiple decryptions
    44 n shares
    45 operation
    46 paper
    47 pixel expansion
    48 progressive property
    49 properties
    50 qualified set
    51 quality
    52 random bits
    53 random grids
    54 recovered secret image
    55 region
    56 results
    57 scheme
    58 secret image
    59 secret sharing
    60 secrets
    61 set
    62 share
    63 sharing
    64 structure
    65 terms
    66 threshold visual secret sharing
    67 visual quality
    68 visual secret sharing
    69 wide application
    70 schema:name Progressive visual secret sharing for general access structure with multiple decryptions
    71 schema:pagination 2653-2672
    72 schema:productId N11425d3cd9bc49bda16dd4549ebed941
    73 Nd7cc0926333347c096cd137dd42ba831
    74 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083744330
    75 https://doi.org/10.1007/s11042-017-4421-7
    76 schema:sdDatePublished 2022-12-01T06:36
    77 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    78 schema:sdPublisher Nac855ced8a4445819e5003fcf8508f3b
    79 schema:url https://doi.org/10.1007/s11042-017-4421-7
    80 sgo:license sg:explorer/license/
    81 sgo:sdDataset articles
    82 rdf:type schema:ScholarlyArticle
    83 N11425d3cd9bc49bda16dd4549ebed941 schema:name dimensions_id
    84 schema:value pub.1083744330
    85 rdf:type schema:PropertyValue
    86 N512520de505e4fcb988e9f3771201f6e schema:volumeNumber 77
    87 rdf:type schema:PublicationVolume
    88 N562a74a7534744808cc40fa12d49339e rdf:first sg:person.010467364517.31
    89 rdf:rest Ne9e0dceeea4d4ee5812551a1dc1cc302
    90 N72b197e0635e4676bd0e02e525a81dbf schema:issueNumber 2
    91 rdf:type schema:PublicationIssue
    92 Nac855ced8a4445819e5003fcf8508f3b schema:name Springer Nature - SN SciGraph project
    93 rdf:type schema:Organization
    94 Nd7cc0926333347c096cd137dd42ba831 schema:name doi
    95 schema:value 10.1007/s11042-017-4421-7
    96 rdf:type schema:PropertyValue
    97 Ne9e0dceeea4d4ee5812551a1dc1cc302 rdf:first sg:person.015112370271.93
    98 rdf:rest rdf:nil
    99 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    100 schema:name Information and Computing Sciences
    101 rdf:type schema:DefinedTerm
    102 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    103 schema:name Artificial Intelligence and Image Processing
    104 rdf:type schema:DefinedTerm
    105 sg:grant.8304044 http://pending.schema.org/fundedItem sg:pub.10.1007/s11042-017-4421-7
    106 rdf:type schema:MonetaryGrant
    107 sg:journal.1044869 schema:issn 1380-7501
    108 1573-7721
    109 schema:name Multimedia Tools and Applications
    110 schema:publisher Springer Nature
    111 rdf:type schema:Periodical
    112 sg:person.010467364517.31 schema:affiliation grid-institutes:None
    113 schema:familyName Yan
    114 schema:givenName Xuehu
    115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010467364517.31
    116 rdf:type schema:Person
    117 sg:person.015112370271.93 schema:affiliation grid-institutes:None
    118 schema:familyName Lu
    119 schema:givenName Yuliang
    120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015112370271.93
    121 rdf:type schema:Person
    122 sg:pub.10.1007/978-3-662-43886-2_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018728677
    123 https://doi.org/10.1007/978-3-662-43886-2_8
    124 rdf:type schema:CreativeWork
    125 sg:pub.10.1007/bfb0053419 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008839066
    126 https://doi.org/10.1007/bfb0053419
    127 rdf:type schema:CreativeWork
    128 sg:pub.10.1007/s10623-004-3816-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027834328
    129 https://doi.org/10.1007/s10623-004-3816-4
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1007/s10916-013-9954-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029190165
    132 https://doi.org/10.1007/s10916-013-9954-3
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1007/s11042-013-1784-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021413130
    135 https://doi.org/10.1007/s11042-013-1784-2
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.1007/s11042-014-2080-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015360804
    138 https://doi.org/10.1007/s11042-014-2080-5
    139 rdf:type schema:CreativeWork
    140 sg:pub.10.1007/s11554-015-0540-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022432477
    141 https://doi.org/10.1007/s11554-015-0540-4
    142 rdf:type schema:CreativeWork
    143 grid-institutes:None schema:alternateName Hefei Electronic Engineering Institute, 230037, Hefei, China
    144 schema:name Hefei Electronic Engineering Institute, 230037, Hefei, China
    145 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...