Smooth filtering identification based on convolutional neural networks View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-12-30

AUTHORS

Anan Liu, Zhengyu Zhao, Chengqian Zhang, Yuting Su

ABSTRACT

The increasing prevalence of digital technology brings great convenience to human life, while also shows us the problems and challenges. Relying on easy-to-use image editing tools, some malicious manipulations, such as image forgery, have already threatened the authenticity of information, especially the electronic evidence in the crimes. As a result, digital forensics attracts more and more attention of researchers. Since some general post-operations, like widely used smooth filtering, can affect the reliability of forensic methods in various ways, it is also significant to detect them. Furthermore, the determination of detailed filtering parameters assists to recover the tampering history of an image. To deal with this problem, we propose a new approach based on convolutional neural networks (CNNs). Through adding a transform layer, obtained distinguishable frequency-domain features are put into a conventional CNN model, to identify the template parameters of various types of spatial smooth filtering operations, such as average, Gaussian and median filtering. Experimental results on a composite database show that putting the images directly into the conventional CNN model without transformation can not work well, and our method achieves better performance than some other applicable related methods, especially in the scenarios of small size and JPEG compression. More... »

PAGES

1-15

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11042-016-4251-z

DOI

http://dx.doi.org/10.1007/s11042-016-4251-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1042091927


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Tianjin University", 
          "id": "https://www.grid.ac/institutes/grid.33763.32", 
          "name": [
            "School of Electronic Information Engineering, Tianjin University, Tianjin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Anan", 
        "id": "sg:person.012232546512.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012232546512.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tianjin University", 
          "id": "https://www.grid.ac/institutes/grid.33763.32", 
          "name": [
            "School of Electronic Information Engineering, Tianjin University, Tianjin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Zhengyu", 
        "id": "sg:person.012127057561.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012127057561.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Southwest Petroleum University", 
          "id": "https://www.grid.ac/institutes/grid.437806.e", 
          "name": [
            "School of Electrical Engineering and Information, Southwest Petroleum University, 610500, Chengdu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Chengqian", 
        "id": "sg:person.011137224460.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011137224460.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tianjin University", 
          "id": "https://www.grid.ac/institutes/grid.33763.32", 
          "name": [
            "School of Electronic Information Engineering, Tianjin University, Tianjin, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Su", 
        "givenName": "Yuting", 
        "id": "sg:person.016564133427.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016564133427.77"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/1774088.1774427", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001060340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2832907", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002568477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-15825-4_10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006220981", 
          "https://doi.org/10.1007/978-3-642-15825-4_10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-15825-4_10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006220981", 
          "https://doi.org/10.1007/978-3-642-15825-4_10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2886775", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007449954"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2014.06.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014995535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00344251", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016635886", 
          "https://doi.org/10.1007/bf00344251"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2016.06.033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024763955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bfb0057597", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025487566", 
          "https://doi.org/10.1007/bfb0057597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-24178-9_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031546911", 
          "https://doi.org/10.1007/978-3-642-24178-9_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-24178-9_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031546911", 
          "https://doi.org/10.1007/978-3-642-24178-9_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0146-664x(82)90105-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031551103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1113/jphysiol.1962.sp006837", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037811822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2964284.2964314", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042564429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.525375", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047175682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01621459.1980.10477521", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058302344"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/5.726791", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061179979"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lsp.2013.2295858", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061378597"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/lsp.2015.2438008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061379229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mmul.2016.69", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061410460"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcyb.2013.2285219", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061579562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcyb.2015.2400821", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061579941"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcyb.2015.2408592", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061579957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tifs.2008.2008214", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061629563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tifs.2010.2051426", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061629733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tifs.2010.2053202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061629739"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tifs.2011.2119314", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061629819"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tifs.2011.2161761", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061629892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tifs.2012.2218597", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061630056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tifs.2013.2273394", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061630187"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tifs.2015.2394231", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061630475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2012.2223226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061643388"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2013.2277814", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061643684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2013.2278465", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061643696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2014.2311658", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061643906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2014.2344433", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061644062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2015.2502147", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061644732"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tmm.2013.2293424", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061698250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tnnls.2015.2444417", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061718895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/apsipa.2014.7041536", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093306544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2014.212", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093810850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2013.70", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094148306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2013.70", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094148306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2013.249", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095126477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2013.249", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095126477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icme.2010.5583869", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095660141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5244/c.28.122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099426673"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-12-30", 
    "datePublishedReg": "2016-12-30", 
    "description": "The increasing prevalence of digital technology brings great convenience to human life, while also shows us the problems and challenges. Relying on easy-to-use image editing tools, some malicious manipulations, such as image forgery, have already threatened the authenticity of information, especially the electronic evidence in the crimes. As a result, digital forensics attracts more and more attention of researchers. Since some general post-operations, like widely used smooth filtering, can affect the reliability of forensic methods in various ways, it is also significant to detect them. Furthermore, the determination of detailed filtering parameters assists to recover the tampering history of an image. To deal with this problem, we propose a new approach based on convolutional neural networks (CNNs). Through adding a transform layer, obtained distinguishable frequency-domain features are put into a conventional CNN model, to identify the template parameters of various types of spatial smooth filtering operations, such as average, Gaussian and median filtering. Experimental results on a composite database show that putting the images directly into the conventional CNN model without transformation can not work well, and our method achieves better performance than some other applicable related methods, especially in the scenarios of small size and JPEG compression.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11042-016-4251-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7178735", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1044869", 
        "issn": [
          "1380-7501", 
          "1573-7721"
        ], 
        "name": "Multimedia Tools and Applications", 
        "type": "Periodical"
      }
    ], 
    "name": "Smooth filtering identification based on convolutional neural networks", 
    "pagination": "1-15", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c8811f9aeb7fa7fa12919fb4057dae3268f0b0ab0c0b7aa3e5dfeda91fff52c7"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11042-016-4251-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1042091927"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11042-016-4251-z", 
      "https://app.dimensions.ai/details/publication/pub.1042091927"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000349_0000000349/records_113640_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11042-016-4251-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11042-016-4251-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11042-016-4251-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11042-016-4251-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11042-016-4251-z'


 

This table displays all metadata directly associated to this object as RDF triples.

214 TRIPLES      21 PREDICATES      67 URIs      16 LITERALS      5 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11042-016-4251-z schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N75c14e989dee4efd834552d5f2c0379b
4 schema:citation sg:pub.10.1007/978-3-642-15825-4_10
5 sg:pub.10.1007/978-3-642-24178-9_5
6 sg:pub.10.1007/bf00344251
7 sg:pub.10.1007/bfb0057597
8 https://doi.org/10.1016/0146-664x(82)90105-8
9 https://doi.org/10.1016/j.eswa.2014.06.026
10 https://doi.org/10.1016/j.eswa.2016.06.033
11 https://doi.org/10.1080/01621459.1980.10477521
12 https://doi.org/10.1109/5.726791
13 https://doi.org/10.1109/apsipa.2014.7041536
14 https://doi.org/10.1109/cvpr.2013.249
15 https://doi.org/10.1109/cvpr.2013.70
16 https://doi.org/10.1109/cvpr.2014.212
17 https://doi.org/10.1109/icme.2010.5583869
18 https://doi.org/10.1109/lsp.2013.2295858
19 https://doi.org/10.1109/lsp.2015.2438008
20 https://doi.org/10.1109/mmul.2016.69
21 https://doi.org/10.1109/tcyb.2013.2285219
22 https://doi.org/10.1109/tcyb.2015.2400821
23 https://doi.org/10.1109/tcyb.2015.2408592
24 https://doi.org/10.1109/tifs.2008.2008214
25 https://doi.org/10.1109/tifs.2010.2051426
26 https://doi.org/10.1109/tifs.2010.2053202
27 https://doi.org/10.1109/tifs.2011.2119314
28 https://doi.org/10.1109/tifs.2011.2161761
29 https://doi.org/10.1109/tifs.2012.2218597
30 https://doi.org/10.1109/tifs.2013.2273394
31 https://doi.org/10.1109/tifs.2015.2394231
32 https://doi.org/10.1109/tip.2012.2223226
33 https://doi.org/10.1109/tip.2013.2277814
34 https://doi.org/10.1109/tip.2013.2278465
35 https://doi.org/10.1109/tip.2014.2311658
36 https://doi.org/10.1109/tip.2014.2344433
37 https://doi.org/10.1109/tip.2015.2502147
38 https://doi.org/10.1109/tmm.2013.2293424
39 https://doi.org/10.1109/tnnls.2015.2444417
40 https://doi.org/10.1113/jphysiol.1962.sp006837
41 https://doi.org/10.1117/12.525375
42 https://doi.org/10.1145/1774088.1774427
43 https://doi.org/10.1145/2832907
44 https://doi.org/10.1145/2886775
45 https://doi.org/10.1145/2964284.2964314
46 https://doi.org/10.5244/c.28.122
47 schema:datePublished 2016-12-30
48 schema:datePublishedReg 2016-12-30
49 schema:description The increasing prevalence of digital technology brings great convenience to human life, while also shows us the problems and challenges. Relying on easy-to-use image editing tools, some malicious manipulations, such as image forgery, have already threatened the authenticity of information, especially the electronic evidence in the crimes. As a result, digital forensics attracts more and more attention of researchers. Since some general post-operations, like widely used smooth filtering, can affect the reliability of forensic methods in various ways, it is also significant to detect them. Furthermore, the determination of detailed filtering parameters assists to recover the tampering history of an image. To deal with this problem, we propose a new approach based on convolutional neural networks (CNNs). Through adding a transform layer, obtained distinguishable frequency-domain features are put into a conventional CNN model, to identify the template parameters of various types of spatial smooth filtering operations, such as average, Gaussian and median filtering. Experimental results on a composite database show that putting the images directly into the conventional CNN model without transformation can not work well, and our method achieves better performance than some other applicable related methods, especially in the scenarios of small size and JPEG compression.
50 schema:genre research_article
51 schema:inLanguage en
52 schema:isAccessibleForFree false
53 schema:isPartOf sg:journal.1044869
54 schema:name Smooth filtering identification based on convolutional neural networks
55 schema:pagination 1-15
56 schema:productId N008f8db0641d41c29d5478c551ffc96f
57 N158f21186500448c96837c91bd085701
58 Nbaa218954a784cc8b163de164aed9375
59 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042091927
60 https://doi.org/10.1007/s11042-016-4251-z
61 schema:sdDatePublished 2019-04-11T10:28
62 schema:sdLicense https://scigraph.springernature.com/explorer/license/
63 schema:sdPublisher N40349a04733849ae9badd29ea7d373c9
64 schema:url https://link.springer.com/10.1007%2Fs11042-016-4251-z
65 sgo:license sg:explorer/license/
66 sgo:sdDataset articles
67 rdf:type schema:ScholarlyArticle
68 N008f8db0641d41c29d5478c551ffc96f schema:name doi
69 schema:value 10.1007/s11042-016-4251-z
70 rdf:type schema:PropertyValue
71 N158f21186500448c96837c91bd085701 schema:name dimensions_id
72 schema:value pub.1042091927
73 rdf:type schema:PropertyValue
74 N40349a04733849ae9badd29ea7d373c9 schema:name Springer Nature - SN SciGraph project
75 rdf:type schema:Organization
76 N693f1046f43141feb713fea167a3c089 rdf:first sg:person.016564133427.77
77 rdf:rest rdf:nil
78 N75c14e989dee4efd834552d5f2c0379b rdf:first sg:person.012232546512.90
79 rdf:rest Nab236d72be1b469f88b672753b7a6ab1
80 N9d57738f5ab74b7a9c8d714bb56d973c rdf:first sg:person.011137224460.43
81 rdf:rest N693f1046f43141feb713fea167a3c089
82 Nab236d72be1b469f88b672753b7a6ab1 rdf:first sg:person.012127057561.36
83 rdf:rest N9d57738f5ab74b7a9c8d714bb56d973c
84 Nbaa218954a784cc8b163de164aed9375 schema:name readcube_id
85 schema:value c8811f9aeb7fa7fa12919fb4057dae3268f0b0ab0c0b7aa3e5dfeda91fff52c7
86 rdf:type schema:PropertyValue
87 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
88 schema:name Information and Computing Sciences
89 rdf:type schema:DefinedTerm
90 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
91 schema:name Artificial Intelligence and Image Processing
92 rdf:type schema:DefinedTerm
93 sg:grant.7178735 http://pending.schema.org/fundedItem sg:pub.10.1007/s11042-016-4251-z
94 rdf:type schema:MonetaryGrant
95 sg:journal.1044869 schema:issn 1380-7501
96 1573-7721
97 schema:name Multimedia Tools and Applications
98 rdf:type schema:Periodical
99 sg:person.011137224460.43 schema:affiliation https://www.grid.ac/institutes/grid.437806.e
100 schema:familyName Zhang
101 schema:givenName Chengqian
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011137224460.43
103 rdf:type schema:Person
104 sg:person.012127057561.36 schema:affiliation https://www.grid.ac/institutes/grid.33763.32
105 schema:familyName Zhao
106 schema:givenName Zhengyu
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012127057561.36
108 rdf:type schema:Person
109 sg:person.012232546512.90 schema:affiliation https://www.grid.ac/institutes/grid.33763.32
110 schema:familyName Liu
111 schema:givenName Anan
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012232546512.90
113 rdf:type schema:Person
114 sg:person.016564133427.77 schema:affiliation https://www.grid.ac/institutes/grid.33763.32
115 schema:familyName Su
116 schema:givenName Yuting
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016564133427.77
118 rdf:type schema:Person
119 sg:pub.10.1007/978-3-642-15825-4_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006220981
120 https://doi.org/10.1007/978-3-642-15825-4_10
121 rdf:type schema:CreativeWork
122 sg:pub.10.1007/978-3-642-24178-9_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031546911
123 https://doi.org/10.1007/978-3-642-24178-9_5
124 rdf:type schema:CreativeWork
125 sg:pub.10.1007/bf00344251 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016635886
126 https://doi.org/10.1007/bf00344251
127 rdf:type schema:CreativeWork
128 sg:pub.10.1007/bfb0057597 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025487566
129 https://doi.org/10.1007/bfb0057597
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/0146-664x(82)90105-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031551103
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.eswa.2014.06.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014995535
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.eswa.2016.06.033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024763955
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1080/01621459.1980.10477521 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058302344
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1109/5.726791 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061179979
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1109/apsipa.2014.7041536 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093306544
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1109/cvpr.2013.249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095126477
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1109/cvpr.2013.70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094148306
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1109/cvpr.2014.212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093810850
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1109/icme.2010.5583869 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095660141
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1109/lsp.2013.2295858 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061378597
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1109/lsp.2015.2438008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061379229
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1109/mmul.2016.69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061410460
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1109/tcyb.2013.2285219 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061579562
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1109/tcyb.2015.2400821 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061579941
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1109/tcyb.2015.2408592 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061579957
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1109/tifs.2008.2008214 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061629563
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1109/tifs.2010.2051426 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061629733
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1109/tifs.2010.2053202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061629739
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1109/tifs.2011.2119314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061629819
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1109/tifs.2011.2161761 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061629892
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1109/tifs.2012.2218597 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061630056
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1109/tifs.2013.2273394 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061630187
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1109/tifs.2015.2394231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061630475
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1109/tip.2012.2223226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061643388
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1109/tip.2013.2277814 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061643684
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1109/tip.2013.2278465 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061643696
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1109/tip.2014.2311658 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061643906
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1109/tip.2014.2344433 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061644062
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1109/tip.2015.2502147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061644732
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1109/tmm.2013.2293424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061698250
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1109/tnnls.2015.2444417 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061718895
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1113/jphysiol.1962.sp006837 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037811822
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1117/12.525375 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047175682
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1145/1774088.1774427 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001060340
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1145/2832907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002568477
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1145/2886775 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007449954
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1145/2964284.2964314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042564429
206 rdf:type schema:CreativeWork
207 https://doi.org/10.5244/c.28.122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099426673
208 rdf:type schema:CreativeWork
209 https://www.grid.ac/institutes/grid.33763.32 schema:alternateName Tianjin University
210 schema:name School of Electronic Information Engineering, Tianjin University, Tianjin, China
211 rdf:type schema:Organization
212 https://www.grid.ac/institutes/grid.437806.e schema:alternateName Southwest Petroleum University
213 schema:name School of Electrical Engineering and Information, Southwest Petroleum University, 610500, Chengdu, China
214 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...