Tamper detection and image recovery for BTC-compressed images View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-07

AUTHORS

Yu-Chen Hu, Kim-Kwang Raymond Choo, Wu-Lin Chen

ABSTRACT

To ensure the integrity of images compressed using block truncation coding (BTC), a tamper detection and image recovery scheme is proposed in this paper. In this scheme, the size of the authentication data can be adaptively selected according to the user’s requirement. The authentication data is embedded in the value differences of the quantization levels in each BTC-compressed image block. Multiple copies of the recovery data are embedded into the bit maps of the smooth blocks. Experimental results show that the proposed scheme performs well in terms of detection precision and the embedded image quality. Meanwhile, the tampered areas can be roughly recovered by using the proposed scheme. More... »

PAGES

15435-15463

References to SciGraph publications

  • 2013-03. A novel tamper detection scheme for BTC-compressed images in OPTO-ELECTRONICS REVIEW
  • 2016-09. Image tamper detection based on noise estimation and lacunarity texture in MULTIMEDIA TOOLS AND APPLICATIONS
  • 2002-12. A Survey of Watermarking Algorithms for Image Authentication in APPLIED SIGNAL PROCESSING
  • 2008-08. Methods for image authentication: a survey in MULTIMEDIA TOOLS AND APPLICATIONS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11042-016-3847-7

    DOI

    http://dx.doi.org/10.1007/s11042-016-3847-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1008174834


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Providence University", 
              "id": "https://www.grid.ac/institutes/grid.412550.7", 
              "name": [
                "Department of Computer Science and Information Management, Providence University, 200 Chung Chi Road, Sec. 7, Taiwan Boulevard, Shalu District, 43301, Taichung City, Taiwan, Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hu", 
            "givenName": "Yu-Chen", 
            "id": "sg:person.012113441135.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012113441135.19"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of South Australia", 
              "id": "https://www.grid.ac/institutes/grid.1026.5", 
              "name": [
                "Department of Information Systems and Cyber Security, University of Texas at San Antonio, San Antonio, USA", 
                "School of Information Technology and Mathematical Sciences, University of South Australia, Adelaide, Australia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Choo", 
            "givenName": "Kim-Kwang Raymond", 
            "id": "sg:person.010354410365.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010354410365.01"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Providence University", 
              "id": "https://www.grid.ac/institutes/grid.412550.7", 
              "name": [
                "Department of Computer Science and Information Management, Providence University, 200 Chung Chi Road, Sec. 7, Taiwan Boulevard, Shalu District, 43301, Taichung City, Taiwan, Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Chen", 
            "givenName": "Wu-Lin", 
            "id": "sg:person.011364173735.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011364173735.27"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.patcog.2007.05.012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001611322"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11042-015-3079-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001634807", 
              "https://doi.org/10.1007/s11042-015-3079-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.sigpro.2011.11.013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002153751"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1117/1.jei.23.3.033003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002258255"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.forsciint.2013.05.027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004513750"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.sigpro.2010.04.027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004523312"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.dsp.2010.04.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006650344"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1117/1.jei.22.1.013012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012563520"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.image.2003.06.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015564696"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.image.2003.06.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015564696"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.sigpro.2009.02.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023529697"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.image.2007.03.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027884482"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jvcir.2011.03.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039804903"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.sigpro.2010.07.019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039849042"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.sigpro.2013.01.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040307485"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.sigpro.2013.11.028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041447859"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11042-007-0154-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046008186", 
              "https://doi.org/10.1007/s11042-007-0154-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.2478/s11772-013-0078-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046116694", 
              "https://doi.org/10.2478/s11772-013-0078-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/76.905982", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061222494"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/83.951543", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061240389"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1155/s1110865702204047", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063207664", 
              "https://doi.org/10.1155/s1110865702204047"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.14257/ijsia.2013.7.6.22", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067239461"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.14257/ijsia.2013.7.6.22", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067239461"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.14257/ijsip.2014.7.5.02", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067240786"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.14257/ijsip.2014.7.5.02", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1067240786"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.3837/tiis.2014.06.011", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1071450122"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-07", 
        "datePublishedReg": "2017-07-01", 
        "description": "To ensure the integrity of images compressed using block truncation coding (BTC), a tamper detection and image recovery scheme is proposed in this paper. In this scheme, the size of the authentication data can be adaptively selected according to the user\u2019s requirement. The authentication data is embedded in the value differences of the quantization levels in each BTC-compressed image block. Multiple copies of the recovery data are embedded into the bit maps of the smooth blocks. Experimental results show that the proposed scheme performs well in terms of detection precision and the embedded image quality. Meanwhile, the tampered areas can be roughly recovered by using the proposed scheme.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11042-016-3847-7", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1044869", 
            "issn": [
              "1380-7501", 
              "1573-7721"
            ], 
            "name": "Multimedia Tools and Applications", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "14", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "76"
          }
        ], 
        "name": "Tamper detection and image recovery for BTC-compressed images", 
        "pagination": "15435-15463", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "26f26d6130b0c40db773b050706aa822e06681e8f8a306c154173c36742712e5"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11042-016-3847-7"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1008174834"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11042-016-3847-7", 
          "https://app.dimensions.ai/details/publication/pub.1008174834"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:27", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87117_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs11042-016-3847-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11042-016-3847-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11042-016-3847-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11042-016-3847-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11042-016-3847-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    152 TRIPLES      21 PREDICATES      50 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11042-016-3847-7 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author Nb09ddc0dca90484d9b0178f6d4cedb8e
    4 schema:citation sg:pub.10.1007/s11042-007-0154-3
    5 sg:pub.10.1007/s11042-015-3079-2
    6 sg:pub.10.1155/s1110865702204047
    7 sg:pub.10.2478/s11772-013-0078-6
    8 https://doi.org/10.1016/j.dsp.2010.04.006
    9 https://doi.org/10.1016/j.forsciint.2013.05.027
    10 https://doi.org/10.1016/j.image.2003.06.001
    11 https://doi.org/10.1016/j.image.2007.03.004
    12 https://doi.org/10.1016/j.jvcir.2011.03.011
    13 https://doi.org/10.1016/j.patcog.2007.05.012
    14 https://doi.org/10.1016/j.sigpro.2009.02.009
    15 https://doi.org/10.1016/j.sigpro.2010.04.027
    16 https://doi.org/10.1016/j.sigpro.2010.07.019
    17 https://doi.org/10.1016/j.sigpro.2011.11.013
    18 https://doi.org/10.1016/j.sigpro.2013.01.009
    19 https://doi.org/10.1016/j.sigpro.2013.11.028
    20 https://doi.org/10.1109/76.905982
    21 https://doi.org/10.1109/83.951543
    22 https://doi.org/10.1117/1.jei.22.1.013012
    23 https://doi.org/10.1117/1.jei.23.3.033003
    24 https://doi.org/10.14257/ijsia.2013.7.6.22
    25 https://doi.org/10.14257/ijsip.2014.7.5.02
    26 https://doi.org/10.3837/tiis.2014.06.011
    27 schema:datePublished 2017-07
    28 schema:datePublishedReg 2017-07-01
    29 schema:description To ensure the integrity of images compressed using block truncation coding (BTC), a tamper detection and image recovery scheme is proposed in this paper. In this scheme, the size of the authentication data can be adaptively selected according to the user’s requirement. The authentication data is embedded in the value differences of the quantization levels in each BTC-compressed image block. Multiple copies of the recovery data are embedded into the bit maps of the smooth blocks. Experimental results show that the proposed scheme performs well in terms of detection precision and the embedded image quality. Meanwhile, the tampered areas can be roughly recovered by using the proposed scheme.
    30 schema:genre research_article
    31 schema:inLanguage en
    32 schema:isAccessibleForFree false
    33 schema:isPartOf N23b44e9ac219495aa32b29492c6dc85e
    34 N7f9dbbe7648c4fcba46de28ac19cc01f
    35 sg:journal.1044869
    36 schema:name Tamper detection and image recovery for BTC-compressed images
    37 schema:pagination 15435-15463
    38 schema:productId N4aed94426f36400abf6c948674055beb
    39 Nacddce47c7894dbcba50f468a011be10
    40 Nf5dcb15ebd88466da45182134678e730
    41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008174834
    42 https://doi.org/10.1007/s11042-016-3847-7
    43 schema:sdDatePublished 2019-04-11T12:27
    44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    45 schema:sdPublisher N9607afb2c5f84471910c3b9d0bbfc7fc
    46 schema:url https://link.springer.com/10.1007%2Fs11042-016-3847-7
    47 sgo:license sg:explorer/license/
    48 sgo:sdDataset articles
    49 rdf:type schema:ScholarlyArticle
    50 N23b44e9ac219495aa32b29492c6dc85e schema:issueNumber 14
    51 rdf:type schema:PublicationIssue
    52 N4aed94426f36400abf6c948674055beb schema:name dimensions_id
    53 schema:value pub.1008174834
    54 rdf:type schema:PropertyValue
    55 N7f9dbbe7648c4fcba46de28ac19cc01f schema:volumeNumber 76
    56 rdf:type schema:PublicationVolume
    57 N9607afb2c5f84471910c3b9d0bbfc7fc schema:name Springer Nature - SN SciGraph project
    58 rdf:type schema:Organization
    59 Nacddce47c7894dbcba50f468a011be10 schema:name readcube_id
    60 schema:value 26f26d6130b0c40db773b050706aa822e06681e8f8a306c154173c36742712e5
    61 rdf:type schema:PropertyValue
    62 Nb09ddc0dca90484d9b0178f6d4cedb8e rdf:first sg:person.012113441135.19
    63 rdf:rest Nebb43e04ca4240f4afc89c17ae3571ec
    64 Nd5365606184444a7912eb4d211bf77b5 rdf:first sg:person.011364173735.27
    65 rdf:rest rdf:nil
    66 Nebb43e04ca4240f4afc89c17ae3571ec rdf:first sg:person.010354410365.01
    67 rdf:rest Nd5365606184444a7912eb4d211bf77b5
    68 Nf5dcb15ebd88466da45182134678e730 schema:name doi
    69 schema:value 10.1007/s11042-016-3847-7
    70 rdf:type schema:PropertyValue
    71 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    72 schema:name Information and Computing Sciences
    73 rdf:type schema:DefinedTerm
    74 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    75 schema:name Artificial Intelligence and Image Processing
    76 rdf:type schema:DefinedTerm
    77 sg:journal.1044869 schema:issn 1380-7501
    78 1573-7721
    79 schema:name Multimedia Tools and Applications
    80 rdf:type schema:Periodical
    81 sg:person.010354410365.01 schema:affiliation https://www.grid.ac/institutes/grid.1026.5
    82 schema:familyName Choo
    83 schema:givenName Kim-Kwang Raymond
    84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010354410365.01
    85 rdf:type schema:Person
    86 sg:person.011364173735.27 schema:affiliation https://www.grid.ac/institutes/grid.412550.7
    87 schema:familyName Chen
    88 schema:givenName Wu-Lin
    89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011364173735.27
    90 rdf:type schema:Person
    91 sg:person.012113441135.19 schema:affiliation https://www.grid.ac/institutes/grid.412550.7
    92 schema:familyName Hu
    93 schema:givenName Yu-Chen
    94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012113441135.19
    95 rdf:type schema:Person
    96 sg:pub.10.1007/s11042-007-0154-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046008186
    97 https://doi.org/10.1007/s11042-007-0154-3
    98 rdf:type schema:CreativeWork
    99 sg:pub.10.1007/s11042-015-3079-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001634807
    100 https://doi.org/10.1007/s11042-015-3079-2
    101 rdf:type schema:CreativeWork
    102 sg:pub.10.1155/s1110865702204047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063207664
    103 https://doi.org/10.1155/s1110865702204047
    104 rdf:type schema:CreativeWork
    105 sg:pub.10.2478/s11772-013-0078-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046116694
    106 https://doi.org/10.2478/s11772-013-0078-6
    107 rdf:type schema:CreativeWork
    108 https://doi.org/10.1016/j.dsp.2010.04.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006650344
    109 rdf:type schema:CreativeWork
    110 https://doi.org/10.1016/j.forsciint.2013.05.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004513750
    111 rdf:type schema:CreativeWork
    112 https://doi.org/10.1016/j.image.2003.06.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015564696
    113 rdf:type schema:CreativeWork
    114 https://doi.org/10.1016/j.image.2007.03.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027884482
    115 rdf:type schema:CreativeWork
    116 https://doi.org/10.1016/j.jvcir.2011.03.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039804903
    117 rdf:type schema:CreativeWork
    118 https://doi.org/10.1016/j.patcog.2007.05.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001611322
    119 rdf:type schema:CreativeWork
    120 https://doi.org/10.1016/j.sigpro.2009.02.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023529697
    121 rdf:type schema:CreativeWork
    122 https://doi.org/10.1016/j.sigpro.2010.04.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004523312
    123 rdf:type schema:CreativeWork
    124 https://doi.org/10.1016/j.sigpro.2010.07.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039849042
    125 rdf:type schema:CreativeWork
    126 https://doi.org/10.1016/j.sigpro.2011.11.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002153751
    127 rdf:type schema:CreativeWork
    128 https://doi.org/10.1016/j.sigpro.2013.01.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040307485
    129 rdf:type schema:CreativeWork
    130 https://doi.org/10.1016/j.sigpro.2013.11.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041447859
    131 rdf:type schema:CreativeWork
    132 https://doi.org/10.1109/76.905982 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061222494
    133 rdf:type schema:CreativeWork
    134 https://doi.org/10.1109/83.951543 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061240389
    135 rdf:type schema:CreativeWork
    136 https://doi.org/10.1117/1.jei.22.1.013012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012563520
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1117/1.jei.23.3.033003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002258255
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.14257/ijsia.2013.7.6.22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067239461
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.14257/ijsip.2014.7.5.02 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067240786
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.3837/tiis.2014.06.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071450122
    145 rdf:type schema:CreativeWork
    146 https://www.grid.ac/institutes/grid.1026.5 schema:alternateName University of South Australia
    147 schema:name Department of Information Systems and Cyber Security, University of Texas at San Antonio, San Antonio, USA
    148 School of Information Technology and Mathematical Sciences, University of South Australia, Adelaide, Australia
    149 rdf:type schema:Organization
    150 https://www.grid.ac/institutes/grid.412550.7 schema:alternateName Providence University
    151 schema:name Department of Computer Science and Information Management, Providence University, 200 Chung Chi Road, Sec. 7, Taiwan Boulevard, Shalu District, 43301, Taichung City, Taiwan, Republic of China
    152 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...