A Grey-based risk selection model using fuzzy information of a supply chain View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-09

AUTHORS

KyoungJong Park

ABSTRACT

A supply chain is easily exposed to risk by uncertainty and complexity and enterprises being difficult to cope with it because the risk involved is not clear in the aspect of time, intensity, duration, and etc. If the risk in a supply chain is probable or even possible, an enterprise should take action to prevent it according to the precautionary principle. If there is any risk, an enterprise should make a strategy to minimize the impact of the risk and act it. This paper proposes a Grey-based risk selection model to consider the many aspects of intensity and possibility of risk in a supply chain. The intensity and possibility of occurring risk are vague and cannot be expressed by exact numerical values. The Grey-based approach has the ability to measure, model, calculate and integrate uncertainty of a supply chain. The proposed model analyzes various risks to evaluate risk in a supply chain and priorities the seriousness of risk to control it. More... »

PAGES

18083-18097

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11042-016-3740-4

DOI

http://dx.doi.org/10.1007/s11042-016-3740-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1014315245


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1503", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Business and Management", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/15", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Commerce, Management, Tourism and Services", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Gwangju University", 
          "id": "https://www.grid.ac/institutes/grid.443795.8", 
          "name": [
            "Department of Business Administration, Business School, Gwangju University, 503-703, Gwangju, Republic of Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Park", 
        "givenName": "KyoungJong", 
        "id": "sg:person.016206065367.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016206065367.20"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/bse.1778", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000153367"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1108/17410380610688241", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002465867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijpe.2015.01.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003378248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijpe.2011.06.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006879008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cie.2014.09.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007982276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejor.2009.01.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009370661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-84882-634-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010685354", 
          "https://doi.org/10.1007/978-1-84882-634-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-84882-634-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010685354", 
          "https://doi.org/10.1007/978-1-84882-634-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1108/09600030010351444", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017245121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:mtap.0000031759.22145.5d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019250748", 
          "https://doi.org/10.1023/b:mtap.0000031759.22145.5d"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.mcm.2006.11.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023246296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.eswa.2015.06.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028723887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ejor.2015.04.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036530631"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.omega.2014.10.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045318592"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11042-015-2860-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051081761", 
          "https://doi.org/10.1007/s11042-015-2860-6"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-09", 
    "datePublishedReg": "2017-09-01", 
    "description": "A supply chain is easily exposed to risk by uncertainty and complexity and enterprises being difficult to cope with it because the risk involved is not clear in the aspect of time, intensity, duration, and etc. If the risk in a supply chain is probable or even possible, an enterprise should take action to prevent it according to the precautionary principle. If there is any risk, an enterprise should make a strategy to minimize the impact of the risk and act it. This paper proposes a Grey-based risk selection model to consider the many aspects of intensity and possibility of risk in a supply chain. The intensity and possibility of occurring risk are vague and cannot be expressed by exact numerical values. The Grey-based approach has the ability to measure, model, calculate and integrate uncertainty of a supply chain. The proposed model analyzes various risks to evaluate risk in a supply chain and priorities the seriousness of risk to control it.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11042-016-3740-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1044869", 
        "issn": [
          "1380-7501", 
          "1573-7721"
        ], 
        "name": "Multimedia Tools and Applications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "17", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "76"
      }
    ], 
    "name": "A Grey-based risk selection model using fuzzy information of a supply chain", 
    "pagination": "18083-18097", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4432879a8314fd306a2294964c2811eb0453a9ac72fadef7628146a4a265daad"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11042-016-3740-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1014315245"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11042-016-3740-4", 
      "https://app.dimensions.ai/details/publication/pub.1014315245"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87117_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11042-016-3740-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11042-016-3740-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11042-016-3740-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11042-016-3740-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11042-016-3740-4'


 

This table displays all metadata directly associated to this object as RDF triples.

106 TRIPLES      21 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11042-016-3740-4 schema:about anzsrc-for:15
2 anzsrc-for:1503
3 schema:author N982d1e9ca9c5401e81674f2d64aa52f2
4 schema:citation sg:pub.10.1007/978-1-84882-634-2
5 sg:pub.10.1007/s11042-015-2860-6
6 sg:pub.10.1023/b:mtap.0000031759.22145.5d
7 https://doi.org/10.1002/bse.1778
8 https://doi.org/10.1016/j.cie.2014.09.026
9 https://doi.org/10.1016/j.ejor.2009.01.016
10 https://doi.org/10.1016/j.ejor.2015.04.034
11 https://doi.org/10.1016/j.eswa.2015.06.018
12 https://doi.org/10.1016/j.ijpe.2011.06.012
13 https://doi.org/10.1016/j.ijpe.2015.01.002
14 https://doi.org/10.1016/j.mcm.2006.11.021
15 https://doi.org/10.1016/j.omega.2014.10.004
16 https://doi.org/10.1108/09600030010351444
17 https://doi.org/10.1108/17410380610688241
18 schema:datePublished 2017-09
19 schema:datePublishedReg 2017-09-01
20 schema:description A supply chain is easily exposed to risk by uncertainty and complexity and enterprises being difficult to cope with it because the risk involved is not clear in the aspect of time, intensity, duration, and etc. If the risk in a supply chain is probable or even possible, an enterprise should take action to prevent it according to the precautionary principle. If there is any risk, an enterprise should make a strategy to minimize the impact of the risk and act it. This paper proposes a Grey-based risk selection model to consider the many aspects of intensity and possibility of risk in a supply chain. The intensity and possibility of occurring risk are vague and cannot be expressed by exact numerical values. The Grey-based approach has the ability to measure, model, calculate and integrate uncertainty of a supply chain. The proposed model analyzes various risks to evaluate risk in a supply chain and priorities the seriousness of risk to control it.
21 schema:genre research_article
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf Nd0fa4b1e4c3a458c9f2cdb438b21cc2a
25 Nf48422981ebe45fe87566f4ae1076167
26 sg:journal.1044869
27 schema:name A Grey-based risk selection model using fuzzy information of a supply chain
28 schema:pagination 18083-18097
29 schema:productId N11ee7b892d974f5694a1233647eee6d4
30 Na0677e78d5754399b0c12a78ede00470
31 Nc208c434d7f74d5dbfff41e7c59b3ba2
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014315245
33 https://doi.org/10.1007/s11042-016-3740-4
34 schema:sdDatePublished 2019-04-11T12:27
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher Nb8c61c6da0ef4e62a0e81e011f025fbf
37 schema:url https://link.springer.com/10.1007%2Fs11042-016-3740-4
38 sgo:license sg:explorer/license/
39 sgo:sdDataset articles
40 rdf:type schema:ScholarlyArticle
41 N11ee7b892d974f5694a1233647eee6d4 schema:name doi
42 schema:value 10.1007/s11042-016-3740-4
43 rdf:type schema:PropertyValue
44 N982d1e9ca9c5401e81674f2d64aa52f2 rdf:first sg:person.016206065367.20
45 rdf:rest rdf:nil
46 Na0677e78d5754399b0c12a78ede00470 schema:name readcube_id
47 schema:value 4432879a8314fd306a2294964c2811eb0453a9ac72fadef7628146a4a265daad
48 rdf:type schema:PropertyValue
49 Nb8c61c6da0ef4e62a0e81e011f025fbf schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 Nc208c434d7f74d5dbfff41e7c59b3ba2 schema:name dimensions_id
52 schema:value pub.1014315245
53 rdf:type schema:PropertyValue
54 Nd0fa4b1e4c3a458c9f2cdb438b21cc2a schema:volumeNumber 76
55 rdf:type schema:PublicationVolume
56 Nf48422981ebe45fe87566f4ae1076167 schema:issueNumber 17
57 rdf:type schema:PublicationIssue
58 anzsrc-for:15 schema:inDefinedTermSet anzsrc-for:
59 schema:name Commerce, Management, Tourism and Services
60 rdf:type schema:DefinedTerm
61 anzsrc-for:1503 schema:inDefinedTermSet anzsrc-for:
62 schema:name Business and Management
63 rdf:type schema:DefinedTerm
64 sg:journal.1044869 schema:issn 1380-7501
65 1573-7721
66 schema:name Multimedia Tools and Applications
67 rdf:type schema:Periodical
68 sg:person.016206065367.20 schema:affiliation https://www.grid.ac/institutes/grid.443795.8
69 schema:familyName Park
70 schema:givenName KyoungJong
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016206065367.20
72 rdf:type schema:Person
73 sg:pub.10.1007/978-1-84882-634-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010685354
74 https://doi.org/10.1007/978-1-84882-634-2
75 rdf:type schema:CreativeWork
76 sg:pub.10.1007/s11042-015-2860-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051081761
77 https://doi.org/10.1007/s11042-015-2860-6
78 rdf:type schema:CreativeWork
79 sg:pub.10.1023/b:mtap.0000031759.22145.5d schema:sameAs https://app.dimensions.ai/details/publication/pub.1019250748
80 https://doi.org/10.1023/b:mtap.0000031759.22145.5d
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1002/bse.1778 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000153367
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1016/j.cie.2014.09.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007982276
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1016/j.ejor.2009.01.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009370661
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1016/j.ejor.2015.04.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036530631
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1016/j.eswa.2015.06.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028723887
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1016/j.ijpe.2011.06.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006879008
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1016/j.ijpe.2015.01.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003378248
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1016/j.mcm.2006.11.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023246296
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1016/j.omega.2014.10.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045318592
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1108/09600030010351444 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017245121
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1108/17410380610688241 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002465867
103 rdf:type schema:CreativeWork
104 https://www.grid.ac/institutes/grid.443795.8 schema:alternateName Gwangju University
105 schema:name Department of Business Administration, Business School, Gwangju University, 503-703, Gwangju, Republic of Korea
106 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...