Fine-grained object recognition in underwater visual data View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-02

AUTHORS

C. Spampinato, S. Palazzo, P. H. Joalland, S. Paris, H. Glotin, K. Blanc, D. Lingrand, F. Precioso

ABSTRACT

In this paper we investigate the fine-grained object categorization problem of determining fish species in low-quality visual data (images and videos) recorded in real-life settings. We first describe a new annotated dataset of about 35,000 fish images (MA-35K dataset), derived from the Fish4Knowledge project, covering 10 fish species from the Eastern Indo-Pacific bio-geographic zone. We then resort to a label propagation method able to transfer the labels from the MA-35K to a set of 20 million fish images in order to achieve variability in fish appearance. The resulting annotated dataset, containing over one million annotations (AA-1M), was then manually checked by removing false positives as well as images with occlusions between fish or showing partially fish. Finally, we randomly picked more than 30,000 fish images distributed among ten fish species and extracted from about 400 10-minute videos, and used this data (both images and videos) for the fish task of the LifeCLEF 2014 contest. Together with the fine-grained visual dataset release, we also present two approaches for fish species classification in, respectively, still images and videos. Both approaches showed high performance (for some fish species the precision and recall were close to one) in object classification and outperformed state-of-the-art methods. In addition, despite the fact that dataset is unbalanced in the number of images per species, both methods (especially the one operating on still images) appear to be rather robust against the long-tail curse of data, showing the best performance on the less populated object classes. More... »

PAGES

1701-1720

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11042-015-2601-x

DOI

http://dx.doi.org/10.1007/s11042-015-2601-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1001436240


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0704", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Fisheries Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/07", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Agricultural and Veterinary Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Catania", 
          "id": "https://www.grid.ac/institutes/grid.8158.4", 
          "name": [
            "Department of Electrical, Electronics and Computer Engineering, University of Catania, Catania, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Spampinato", 
        "givenName": "C.", 
        "id": "sg:person.0724276322.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724276322.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Catania", 
          "id": "https://www.grid.ac/institutes/grid.8158.4", 
          "name": [
            "Department of Electrical, Electronics and Computer Engineering, University of Catania, Catania, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Palazzo", 
        "givenName": "S.", 
        "id": "sg:person.011712254530.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011712254530.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universite De Toulon Et Du Var", 
          "id": "https://www.grid.ac/institutes/grid.12611.35", 
          "name": [
            "Aix-Marseille Universit\u00e9, CNRS, ENSAM, LSIS UMR 7296, 13397, Marseille, France", 
            "Universit\u00e9 de Toulon, CNRS, LSIS UMR 7296, 83957, La Garde, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Joalland", 
        "givenName": "P. H.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut Universitaire de France", 
          "id": "https://www.grid.ac/institutes/grid.440891.0", 
          "name": [
            "Aix-Marseille Universit\u00e9, CNRS, ENSAM, LSIS UMR 7296, 13397, Marseille, France", 
            "Universit\u00e9 de Toulon, CNRS, LSIS UMR 7296, 83957, La Garde, France", 
            "Institut Universitaire de France (IUF), 75005, Paris, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Paris", 
        "givenName": "S.", 
        "id": "sg:person.014371661147.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014371661147.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Universite De Toulon Et Du Var", 
          "id": "https://www.grid.ac/institutes/grid.12611.35", 
          "name": [
            "Aix-Marseille Universit\u00e9, CNRS, ENSAM, LSIS UMR 7296, 13397, Marseille, France", 
            "Universit\u00e9 de Toulon, CNRS, LSIS UMR 7296, 83957, La Garde, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Glotin", 
        "givenName": "H.", 
        "id": "sg:person.016622300103.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016622300103.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nice Sophia Antipolis University", 
          "id": "https://www.grid.ac/institutes/grid.10737.32", 
          "name": [
            "I3S, UMR UNS-CNRS 7271, University of Nice Sophia Antipolis, Nice, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Blanc", 
        "givenName": "K.", 
        "id": "sg:person.013072411703.84", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013072411703.84"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nice Sophia Antipolis University", 
          "id": "https://www.grid.ac/institutes/grid.10737.32", 
          "name": [
            "I3S, UMR UNS-CNRS 7271, University of Nice Sophia Antipolis, Nice, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lingrand", 
        "givenName": "D.", 
        "id": "sg:person.011124127655.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011124127655.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nice Sophia Antipolis University", 
          "id": "https://www.grid.ac/institutes/grid.10737.32", 
          "name": [
            "I3S, UMR UNS-CNRS 7271, University of Nice Sophia Antipolis, Nice, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Precioso", 
        "givenName": "F.", 
        "id": "sg:person.011466776776.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011466776776.54"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/1553374.1553463", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002090081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cviu.2014.06.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007286240"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/2661821.2661827", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013099337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/1873951.1874249", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013699282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11263-009-0275-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014796149", 
          "https://doi.org/10.1007/s11263-009-0275-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11263-009-0275-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014796149", 
          "https://doi.org/10.1007/s11263-009-0275-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-05491-9_5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016320169", 
          "https://doi.org/10.1007/978-3-319-05491-9_5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cviu.2013.12.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024616332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-37331-2_32", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035403198", 
          "https://doi.org/10.1007/978-3-642-37331-2_32"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-33709-3_36", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035838871", 
          "https://doi.org/10.1007/978-3-642-33709-3_36"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.patrec.2012.07.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037871789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00138-014-0641-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039495159", 
          "https://doi.org/10.1007/s00138-014-0641-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-15561-1_32", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042418422", 
          "https://doi.org/10.1007/978-3-642-15561-1_32"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-15561-1_32", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042418422", 
          "https://doi.org/10.1007/978-3-642-15561-1_32"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00138-013-0509-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044445693", 
          "https://doi.org/10.1007/s00138-013-0509-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2012.6248089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045841678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ecoinf.2013.10.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046504111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/860435.860459", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053524475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2010.2042645", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061642436"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2010.2101613", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061642729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2002.1017623", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061742396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2008.128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061743490"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2013.81", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093768115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2013.81", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093768115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icpr.2004.1333992", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093863771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2011.6126238", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093883457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2010.5540234", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094060278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2006.68", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094512911"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2011.5995368", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094538483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/cvpr.2012.6248092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094578890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2003.1238476", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094847977"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.1999.790410", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095766209"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5220/0004198303350344", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099307467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5220/0003866604090414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099367899"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-02", 
    "datePublishedReg": "2016-02-01", 
    "description": "In this paper we investigate the fine-grained object categorization problem of determining fish species in low-quality visual data (images and videos) recorded in real-life settings. We first describe a new annotated dataset of about 35,000 fish images (MA-35K dataset), derived from the Fish4Knowledge project, covering 10 fish species from the Eastern Indo-Pacific bio-geographic zone. We then resort to a label propagation method able to transfer the labels from the MA-35K to a set of 20 million fish images in order to achieve variability in fish appearance. The resulting annotated dataset, containing over one million annotations (AA-1M), was then manually checked by removing false positives as well as images with occlusions between fish or showing partially fish. Finally, we randomly picked more than 30,000 fish images distributed among ten fish species and extracted from about 400 10-minute videos, and used this data (both images and videos) for the fish task of the LifeCLEF 2014 contest. Together with the fine-grained visual dataset release, we also present two approaches for fish species classification in, respectively, still images and videos. Both approaches showed high performance (for some fish species the precision and recall were close to one) in object classification and outperformed state-of-the-art methods. In addition, despite the fact that dataset is unbalanced in the number of images per species, both methods (especially the one operating on still images) appear to be rather robust against the long-tail curse of data, showing the best performance on the less populated object classes.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11042-015-2601-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1044869", 
        "issn": [
          "1380-7501", 
          "1573-7721"
        ], 
        "name": "Multimedia Tools and Applications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "75"
      }
    ], 
    "name": "Fine-grained object recognition in underwater visual data", 
    "pagination": "1701-1720", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "06d78f63423572b73d1d5d0622766ae8b0ada01e3fdd07ef93f3ca8bb82a88e5"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11042-015-2601-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1001436240"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11042-015-2601-x", 
      "https://app.dimensions.ai/details/publication/pub.1001436240"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89812_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11042-015-2601-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11042-015-2601-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11042-015-2601-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11042-015-2601-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11042-015-2601-x'


 

This table displays all metadata directly associated to this object as RDF triples.

221 TRIPLES      21 PREDICATES      58 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11042-015-2601-x schema:about anzsrc-for:07
2 anzsrc-for:0704
3 schema:author N85ea93d9848b490aa52a2ee4bbee77d9
4 schema:citation sg:pub.10.1007/978-3-319-05491-9_5
5 sg:pub.10.1007/978-3-642-15561-1_32
6 sg:pub.10.1007/978-3-642-33709-3_36
7 sg:pub.10.1007/978-3-642-37331-2_32
8 sg:pub.10.1007/s00138-013-0509-x
9 sg:pub.10.1007/s00138-014-0641-2
10 sg:pub.10.1007/s11263-009-0275-4
11 https://doi.org/10.1016/j.cviu.2013.12.003
12 https://doi.org/10.1016/j.cviu.2014.06.005
13 https://doi.org/10.1016/j.ecoinf.2013.10.006
14 https://doi.org/10.1016/j.patrec.2012.07.019
15 https://doi.org/10.1109/cvpr.2006.68
16 https://doi.org/10.1109/cvpr.2010.5540234
17 https://doi.org/10.1109/cvpr.2011.5995368
18 https://doi.org/10.1109/cvpr.2012.6248089
19 https://doi.org/10.1109/cvpr.2012.6248092
20 https://doi.org/10.1109/cvpr.2013.81
21 https://doi.org/10.1109/iccv.1999.790410
22 https://doi.org/10.1109/iccv.2003.1238476
23 https://doi.org/10.1109/iccv.2011.6126238
24 https://doi.org/10.1109/icpr.2004.1333992
25 https://doi.org/10.1109/tip.2010.2042645
26 https://doi.org/10.1109/tip.2010.2101613
27 https://doi.org/10.1109/tpami.2002.1017623
28 https://doi.org/10.1109/tpami.2008.128
29 https://doi.org/10.1145/1553374.1553463
30 https://doi.org/10.1145/1873951.1874249
31 https://doi.org/10.1145/2661821.2661827
32 https://doi.org/10.1145/860435.860459
33 https://doi.org/10.5220/0003866604090414
34 https://doi.org/10.5220/0004198303350344
35 schema:datePublished 2016-02
36 schema:datePublishedReg 2016-02-01
37 schema:description In this paper we investigate the fine-grained object categorization problem of determining fish species in low-quality visual data (images and videos) recorded in real-life settings. We first describe a new annotated dataset of about 35,000 fish images (MA-35K dataset), derived from the Fish4Knowledge project, covering 10 fish species from the Eastern Indo-Pacific bio-geographic zone. We then resort to a label propagation method able to transfer the labels from the MA-35K to a set of 20 million fish images in order to achieve variability in fish appearance. The resulting annotated dataset, containing over one million annotations (AA-1M), was then manually checked by removing false positives as well as images with occlusions between fish or showing partially fish. Finally, we randomly picked more than 30,000 fish images distributed among ten fish species and extracted from about 400 10-minute videos, and used this data (both images and videos) for the fish task of the LifeCLEF 2014 contest. Together with the fine-grained visual dataset release, we also present two approaches for fish species classification in, respectively, still images and videos. Both approaches showed high performance (for some fish species the precision and recall were close to one) in object classification and outperformed state-of-the-art methods. In addition, despite the fact that dataset is unbalanced in the number of images per species, both methods (especially the one operating on still images) appear to be rather robust against the long-tail curse of data, showing the best performance on the less populated object classes.
38 schema:genre research_article
39 schema:inLanguage en
40 schema:isAccessibleForFree false
41 schema:isPartOf N4fe0d9496d734b51af525e60e8e5bd8b
42 N7272671199cc4ee1b22ab9d47cae50a6
43 sg:journal.1044869
44 schema:name Fine-grained object recognition in underwater visual data
45 schema:pagination 1701-1720
46 schema:productId N2e0eb9b4c8074b96acdead6f5bd4de14
47 N2f262fb75ad04fda9c29de94142d8764
48 N76efc4b7b07f468bbfc9b5ff61163e27
49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001436240
50 https://doi.org/10.1007/s11042-015-2601-x
51 schema:sdDatePublished 2019-04-11T09:57
52 schema:sdLicense https://scigraph.springernature.com/explorer/license/
53 schema:sdPublisher N46fde1f44ff14f7b8a47d5c6c4450449
54 schema:url https://link.springer.com/10.1007%2Fs11042-015-2601-x
55 sgo:license sg:explorer/license/
56 sgo:sdDataset articles
57 rdf:type schema:ScholarlyArticle
58 N19e635567c804a08b755cad2384b285a schema:affiliation https://www.grid.ac/institutes/grid.12611.35
59 schema:familyName Joalland
60 schema:givenName P. H.
61 rdf:type schema:Person
62 N2e0eb9b4c8074b96acdead6f5bd4de14 schema:name doi
63 schema:value 10.1007/s11042-015-2601-x
64 rdf:type schema:PropertyValue
65 N2f262fb75ad04fda9c29de94142d8764 schema:name dimensions_id
66 schema:value pub.1001436240
67 rdf:type schema:PropertyValue
68 N38eb7ee324e3467193ed1dc6d06317c4 rdf:first N19e635567c804a08b755cad2384b285a
69 rdf:rest N616a818c68624ec88c03e22b0b88c79c
70 N46fde1f44ff14f7b8a47d5c6c4450449 schema:name Springer Nature - SN SciGraph project
71 rdf:type schema:Organization
72 N4fe0d9496d734b51af525e60e8e5bd8b schema:issueNumber 3
73 rdf:type schema:PublicationIssue
74 N616a818c68624ec88c03e22b0b88c79c rdf:first sg:person.014371661147.40
75 rdf:rest N6543147368644cda8a58b9f871c48e3a
76 N6543147368644cda8a58b9f871c48e3a rdf:first sg:person.016622300103.82
77 rdf:rest N666f44dce3c44b68a43b74b83aee5621
78 N666f44dce3c44b68a43b74b83aee5621 rdf:first sg:person.013072411703.84
79 rdf:rest Ne00079a728f4479d82a2c0da5b024906
80 N7272671199cc4ee1b22ab9d47cae50a6 schema:volumeNumber 75
81 rdf:type schema:PublicationVolume
82 N76efc4b7b07f468bbfc9b5ff61163e27 schema:name readcube_id
83 schema:value 06d78f63423572b73d1d5d0622766ae8b0ada01e3fdd07ef93f3ca8bb82a88e5
84 rdf:type schema:PropertyValue
85 N82569039dc21430b8ca76523ec7d27ff rdf:first sg:person.011466776776.54
86 rdf:rest rdf:nil
87 N85ea93d9848b490aa52a2ee4bbee77d9 rdf:first sg:person.0724276322.53
88 rdf:rest Ncac750bc91a04a68b619f3a56f5b44e4
89 Ncac750bc91a04a68b619f3a56f5b44e4 rdf:first sg:person.011712254530.71
90 rdf:rest N38eb7ee324e3467193ed1dc6d06317c4
91 Ne00079a728f4479d82a2c0da5b024906 rdf:first sg:person.011124127655.05
92 rdf:rest N82569039dc21430b8ca76523ec7d27ff
93 anzsrc-for:07 schema:inDefinedTermSet anzsrc-for:
94 schema:name Agricultural and Veterinary Sciences
95 rdf:type schema:DefinedTerm
96 anzsrc-for:0704 schema:inDefinedTermSet anzsrc-for:
97 schema:name Fisheries Sciences
98 rdf:type schema:DefinedTerm
99 sg:journal.1044869 schema:issn 1380-7501
100 1573-7721
101 schema:name Multimedia Tools and Applications
102 rdf:type schema:Periodical
103 sg:person.011124127655.05 schema:affiliation https://www.grid.ac/institutes/grid.10737.32
104 schema:familyName Lingrand
105 schema:givenName D.
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011124127655.05
107 rdf:type schema:Person
108 sg:person.011466776776.54 schema:affiliation https://www.grid.ac/institutes/grid.10737.32
109 schema:familyName Precioso
110 schema:givenName F.
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011466776776.54
112 rdf:type schema:Person
113 sg:person.011712254530.71 schema:affiliation https://www.grid.ac/institutes/grid.8158.4
114 schema:familyName Palazzo
115 schema:givenName S.
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011712254530.71
117 rdf:type schema:Person
118 sg:person.013072411703.84 schema:affiliation https://www.grid.ac/institutes/grid.10737.32
119 schema:familyName Blanc
120 schema:givenName K.
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013072411703.84
122 rdf:type schema:Person
123 sg:person.014371661147.40 schema:affiliation https://www.grid.ac/institutes/grid.440891.0
124 schema:familyName Paris
125 schema:givenName S.
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014371661147.40
127 rdf:type schema:Person
128 sg:person.016622300103.82 schema:affiliation https://www.grid.ac/institutes/grid.12611.35
129 schema:familyName Glotin
130 schema:givenName H.
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016622300103.82
132 rdf:type schema:Person
133 sg:person.0724276322.53 schema:affiliation https://www.grid.ac/institutes/grid.8158.4
134 schema:familyName Spampinato
135 schema:givenName C.
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0724276322.53
137 rdf:type schema:Person
138 sg:pub.10.1007/978-3-319-05491-9_5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016320169
139 https://doi.org/10.1007/978-3-319-05491-9_5
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/978-3-642-15561-1_32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042418422
142 https://doi.org/10.1007/978-3-642-15561-1_32
143 rdf:type schema:CreativeWork
144 sg:pub.10.1007/978-3-642-33709-3_36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035838871
145 https://doi.org/10.1007/978-3-642-33709-3_36
146 rdf:type schema:CreativeWork
147 sg:pub.10.1007/978-3-642-37331-2_32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035403198
148 https://doi.org/10.1007/978-3-642-37331-2_32
149 rdf:type schema:CreativeWork
150 sg:pub.10.1007/s00138-013-0509-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1044445693
151 https://doi.org/10.1007/s00138-013-0509-x
152 rdf:type schema:CreativeWork
153 sg:pub.10.1007/s00138-014-0641-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039495159
154 https://doi.org/10.1007/s00138-014-0641-2
155 rdf:type schema:CreativeWork
156 sg:pub.10.1007/s11263-009-0275-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014796149
157 https://doi.org/10.1007/s11263-009-0275-4
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.cviu.2013.12.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024616332
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.cviu.2014.06.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007286240
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/j.ecoinf.2013.10.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046504111
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1016/j.patrec.2012.07.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037871789
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1109/cvpr.2006.68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094512911
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1109/cvpr.2010.5540234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094060278
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1109/cvpr.2011.5995368 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094538483
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1109/cvpr.2012.6248089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045841678
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1109/cvpr.2012.6248092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094578890
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1109/cvpr.2013.81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093768115
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1109/iccv.1999.790410 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095766209
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1109/iccv.2003.1238476 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094847977
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1109/iccv.2011.6126238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093883457
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1109/icpr.2004.1333992 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093863771
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1109/tip.2010.2042645 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061642436
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1109/tip.2010.2101613 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061642729
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1109/tpami.2002.1017623 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742396
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1109/tpami.2008.128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061743490
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1145/1553374.1553463 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002090081
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1145/1873951.1874249 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013699282
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1145/2661821.2661827 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013099337
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1145/860435.860459 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053524475
202 rdf:type schema:CreativeWork
203 https://doi.org/10.5220/0003866604090414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099367899
204 rdf:type schema:CreativeWork
205 https://doi.org/10.5220/0004198303350344 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099307467
206 rdf:type schema:CreativeWork
207 https://www.grid.ac/institutes/grid.10737.32 schema:alternateName Nice Sophia Antipolis University
208 schema:name I3S, UMR UNS-CNRS 7271, University of Nice Sophia Antipolis, Nice, France
209 rdf:type schema:Organization
210 https://www.grid.ac/institutes/grid.12611.35 schema:alternateName Universite De Toulon Et Du Var
211 schema:name Aix-Marseille Université, CNRS, ENSAM, LSIS UMR 7296, 13397, Marseille, France
212 Université de Toulon, CNRS, LSIS UMR 7296, 83957, La Garde, France
213 rdf:type schema:Organization
214 https://www.grid.ac/institutes/grid.440891.0 schema:alternateName Institut Universitaire de France
215 schema:name Aix-Marseille Université, CNRS, ENSAM, LSIS UMR 7296, 13397, Marseille, France
216 Institut Universitaire de France (IUF), 75005, Paris, France
217 Université de Toulon, CNRS, LSIS UMR 7296, 83957, La Garde, France
218 rdf:type schema:Organization
219 https://www.grid.ac/institutes/grid.8158.4 schema:alternateName University of Catania
220 schema:name Department of Electrical, Electronics and Computer Engineering, University of Catania, Catania, Italy
221 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...