Improving 3D similarity search by enhancing and combining 3D descriptors View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2011-01-05

AUTHORS

Benjamin Bustos, Tobias Schreck, Michael Walter, Juan Manuel Barrios, Matthias Schaefer, Daniel Keim

ABSTRACT

Effective content-based retrieval in 3D model databases is an important problem that has attracted much research attention over the last years. Many individual methods proposed to date rely on calculating global 3D model descriptors based on image, surface, volumetric, or structural model properties. Descriptors such as these are then input for determining the degree of similarity between models. Traditionally, the ability of individual descriptors to perform effective 3D search is decided by benchmarking. However, in practice the data set on which 3D retrieval is to be applied may differ from the characteristics of the respective benchmark. Therefore, statically determining the descriptor to use based on a fixed benchmark may lead to suboptimal results. We propose a generic strategy to improve the retrieval effectiveness in 3D retrieval systems consisting of multiple model descriptors. The specific contribution of this paper is two-fold. First, we propose to adaptively combine multiple descriptors by forming weighted descriptor combinations, where the weight of each descriptor is decided at query time. Second, we enhance the set of global model descriptors to be combined by including partial descriptors of the same kind in the combinations. Partial descriptors are obtained by applying a given descriptor extractor on the set of parts of a model, obtained by a simple model partitioning scheme. Thereby, more model information is exposed to the 3D descriptors, leading to a more complete object description. We give a systematic discussion of the descriptor combination space involving static and query-adaptive weighting schemes, and based on descriptors of different type and focus (model global vs. partial). The combination of both global and partial model descriptors is shown to deliver improved retrieval precision, compared to policies using single descriptors or fixed-weight combinations. The resulting scheme is generic and can accommodate a large class of global 3D model descriptors. More... »

PAGES

81-108

References to SciGraph publications

  • 2006-02-23. An experimental effectiveness comparison of methods for 3D similarity search in INTERNATIONAL JOURNAL ON DIGITAL LIBRARIES
  • 2007-12-08. A survey of content based 3D shape retrieval methods in MULTIMEDIA TOOLS AND APPLICATIONS
  • 2008-01-25. A powerful relevance feedback mechanism for content-based 3D model retrieval in MULTIMEDIA TOOLS AND APPLICATIONS
  • 2004-11. Distinctive Image Features from Scale-Invariant Keypoints in INTERNATIONAL JOURNAL OF COMPUTER VISION
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11042-010-0689-6

    DOI

    http://dx.doi.org/10.1007/s11042-010-0689-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1032917986


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information Systems", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Computer Science, University of Chile, Av. Blanco Encalada 2120 3er Piso, 8370459, Santiago, Chile", 
              "id": "http://www.grid.ac/institutes/grid.443909.3", 
              "name": [
                "Department of Computer Science, University of Chile, Av. Blanco Encalada 2120 3er Piso, 8370459, Santiago, Chile"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bustos", 
            "givenName": "Benjamin", 
            "id": "sg:person.013603475513.94", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013603475513.94"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Computer Science, Technische Universitaet Darmstadt, Fraunhoferstrasse 5, 64283, Darmstadt, Germany", 
              "id": "http://www.grid.ac/institutes/grid.6546.1", 
              "name": [
                "Department of Computer Science, Technische Universitaet Darmstadt, Fraunhoferstrasse 5, 64283, Darmstadt, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schreck", 
            "givenName": "Tobias", 
            "id": "sg:person.01165671765.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165671765.01"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Computer Science, Technische Universitaet Darmstadt, Fraunhoferstrasse 5, 64283, Darmstadt, Germany", 
              "id": "http://www.grid.ac/institutes/grid.6546.1", 
              "name": [
                "Department of Computer Science, Technische Universitaet Darmstadt, Fraunhoferstrasse 5, 64283, Darmstadt, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Walter", 
            "givenName": "Michael", 
            "id": "sg:person.016426034420.90", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016426034420.90"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Computer Science, University of Chile, Av. Blanco Encalada 2120 3er Piso, 8370459, Santiago, Chile", 
              "id": "http://www.grid.ac/institutes/grid.443909.3", 
              "name": [
                "Department of Computer Science, University of Chile, Av. Blanco Encalada 2120 3er Piso, 8370459, Santiago, Chile"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Barrios", 
            "givenName": "Juan Manuel", 
            "id": "sg:person.011046202211.48", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011046202211.48"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Computer Science, University of Konstanz, Universitaetsstrasse 10, 78457, Konstanz, Germany", 
              "id": "http://www.grid.ac/institutes/grid.9811.1", 
              "name": [
                "Department of Computer Science, University of Konstanz, Universitaetsstrasse 10, 78457, Konstanz, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schaefer", 
            "givenName": "Matthias", 
            "id": "sg:person.010474635033.54", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010474635033.54"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Computer Science, University of Konstanz, Universitaetsstrasse 10, 78457, Konstanz, Germany", 
              "id": "http://www.grid.ac/institutes/grid.9811.1", 
              "name": [
                "Department of Computer Science, University of Konstanz, Universitaetsstrasse 10, 78457, Konstanz, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Keim", 
            "givenName": "Daniel", 
            "id": "sg:person.0635776571.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635776571.01"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11042-007-0181-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027941864", 
              "https://doi.org/10.1007/s11042-007-0181-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11042-007-0188-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045073501", 
              "https://doi.org/10.1007/s11042-007-0188-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00799-005-0122-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010004503", 
              "https://doi.org/10.1007/s00799-005-0122-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/b:visi.0000029664.99615.94", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052687286", 
              "https://doi.org/10.1023/b:visi.0000029664.99615.94"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2011-01-05", 
        "datePublishedReg": "2011-01-05", 
        "description": "Effective content-based retrieval in 3D model databases is an important problem that has attracted much research attention over the last years. Many individual methods proposed to date rely on calculating global 3D model descriptors based on image, surface, volumetric, or structural model properties. Descriptors such as these are then input for determining the degree of similarity between models. Traditionally, the ability of individual descriptors to perform effective 3D search is decided by benchmarking. However, in practice the data set on which 3D retrieval is to be applied may differ from the characteristics of the respective benchmark. Therefore, statically determining the descriptor to use based on a fixed benchmark may lead to suboptimal results. We propose a generic strategy to improve the retrieval effectiveness in 3D retrieval systems consisting of multiple model descriptors. The specific contribution of this paper is two-fold. First, we propose to adaptively combine multiple descriptors by forming weighted descriptor combinations, where the weight of each descriptor is decided at query time. Second, we enhance the set of global model descriptors to be combined by including partial descriptors of the same kind in the combinations. Partial descriptors are obtained by applying a given descriptor extractor on the set of parts of a model, obtained by a simple model partitioning scheme. Thereby, more model information is exposed to the 3D descriptors, leading to a more complete object description. We give a systematic discussion of the descriptor combination space involving static and query-adaptive weighting schemes, and based on descriptors of different type and focus (model global vs. partial). The combination of both global and partial model descriptors is shown to deliver improved retrieval precision, compared to policies using single descriptors or fixed-weight combinations. The resulting scheme is generic and can accommodate a large class of global 3D model descriptors.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11042-010-0689-6", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1044869", 
            "issn": [
              "1380-7501", 
              "1573-7721"
            ], 
            "name": "Multimedia Tools and Applications", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "58"
          }
        ], 
        "keywords": [
          "model descriptors", 
          "content-based retrieval", 
          "partial descriptors", 
          "retrieval system", 
          "retrieval effectiveness", 
          "retrieval precision", 
          "query time", 
          "model database", 
          "set of parts", 
          "similarity search", 
          "object description", 
          "model information", 
          "multiple descriptors", 
          "descriptor combinations", 
          "individual descriptors", 
          "combination space", 
          "single descriptor", 
          "important problem", 
          "weighting scheme", 
          "descriptors", 
          "retrieval", 
          "individual methods", 
          "structural model properties", 
          "degree of similarity", 
          "benchmarks", 
          "scheme", 
          "model properties", 
          "respective benchmarks", 
          "research attention", 
          "suboptimal results", 
          "set", 
          "search", 
          "extractor", 
          "last years", 
          "large class", 
          "generic strategies", 
          "images", 
          "two-fold", 
          "model", 
          "database", 
          "different types", 
          "information", 
          "input", 
          "effectiveness", 
          "systematic discussion", 
          "precision", 
          "system", 
          "same kind", 
          "space", 
          "kind", 
          "similarity", 
          "data", 
          "method", 
          "description", 
          "combination", 
          "class", 
          "attention", 
          "strategies", 
          "time", 
          "focus", 
          "specific contribution", 
          "part", 
          "ability", 
          "results", 
          "policy", 
          "contribution", 
          "practice", 
          "discussion", 
          "types", 
          "simple model", 
          "characteristics", 
          "degree", 
          "weight", 
          "date", 
          "years", 
          "properties", 
          "surface", 
          "paper", 
          "problem"
        ], 
        "name": "Improving 3D similarity search by enhancing and combining 3D descriptors", 
        "pagination": "81-108", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1032917986"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11042-010-0689-6"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11042-010-0689-6", 
          "https://app.dimensions.ai/details/publication/pub.1032917986"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:36", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_537.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11042-010-0689-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11042-010-0689-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11042-010-0689-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11042-010-0689-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11042-010-0689-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    197 TRIPLES      21 PREDICATES      108 URIs      95 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11042-010-0689-6 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 anzsrc-for:0806
    4 schema:author N2a6d034f67c342e2920b392889fef4cc
    5 schema:citation sg:pub.10.1007/s00799-005-0122-3
    6 sg:pub.10.1007/s11042-007-0181-0
    7 sg:pub.10.1007/s11042-007-0188-6
    8 sg:pub.10.1023/b:visi.0000029664.99615.94
    9 schema:datePublished 2011-01-05
    10 schema:datePublishedReg 2011-01-05
    11 schema:description Effective content-based retrieval in 3D model databases is an important problem that has attracted much research attention over the last years. Many individual methods proposed to date rely on calculating global 3D model descriptors based on image, surface, volumetric, or structural model properties. Descriptors such as these are then input for determining the degree of similarity between models. Traditionally, the ability of individual descriptors to perform effective 3D search is decided by benchmarking. However, in practice the data set on which 3D retrieval is to be applied may differ from the characteristics of the respective benchmark. Therefore, statically determining the descriptor to use based on a fixed benchmark may lead to suboptimal results. We propose a generic strategy to improve the retrieval effectiveness in 3D retrieval systems consisting of multiple model descriptors. The specific contribution of this paper is two-fold. First, we propose to adaptively combine multiple descriptors by forming weighted descriptor combinations, where the weight of each descriptor is decided at query time. Second, we enhance the set of global model descriptors to be combined by including partial descriptors of the same kind in the combinations. Partial descriptors are obtained by applying a given descriptor extractor on the set of parts of a model, obtained by a simple model partitioning scheme. Thereby, more model information is exposed to the 3D descriptors, leading to a more complete object description. We give a systematic discussion of the descriptor combination space involving static and query-adaptive weighting schemes, and based on descriptors of different type and focus (model global vs. partial). The combination of both global and partial model descriptors is shown to deliver improved retrieval precision, compared to policies using single descriptors or fixed-weight combinations. The resulting scheme is generic and can accommodate a large class of global 3D model descriptors.
    12 schema:genre article
    13 schema:isAccessibleForFree true
    14 schema:isPartOf N36b3fb0158064a0fbb130eb0585c1784
    15 Nd0487a2bcf4e46f68286a20dc66126f2
    16 sg:journal.1044869
    17 schema:keywords ability
    18 attention
    19 benchmarks
    20 characteristics
    21 class
    22 combination
    23 combination space
    24 content-based retrieval
    25 contribution
    26 data
    27 database
    28 date
    29 degree
    30 degree of similarity
    31 description
    32 descriptor combinations
    33 descriptors
    34 different types
    35 discussion
    36 effectiveness
    37 extractor
    38 focus
    39 generic strategies
    40 images
    41 important problem
    42 individual descriptors
    43 individual methods
    44 information
    45 input
    46 kind
    47 large class
    48 last years
    49 method
    50 model
    51 model database
    52 model descriptors
    53 model information
    54 model properties
    55 multiple descriptors
    56 object description
    57 paper
    58 part
    59 partial descriptors
    60 policy
    61 practice
    62 precision
    63 problem
    64 properties
    65 query time
    66 research attention
    67 respective benchmarks
    68 results
    69 retrieval
    70 retrieval effectiveness
    71 retrieval precision
    72 retrieval system
    73 same kind
    74 scheme
    75 search
    76 set
    77 set of parts
    78 similarity
    79 similarity search
    80 simple model
    81 single descriptor
    82 space
    83 specific contribution
    84 strategies
    85 structural model properties
    86 suboptimal results
    87 surface
    88 system
    89 systematic discussion
    90 time
    91 two-fold
    92 types
    93 weight
    94 weighting scheme
    95 years
    96 schema:name Improving 3D similarity search by enhancing and combining 3D descriptors
    97 schema:pagination 81-108
    98 schema:productId N52dfb46b5d5943c09dd5830e2506c385
    99 N897f7730295e4404ad86218340b79742
    100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032917986
    101 https://doi.org/10.1007/s11042-010-0689-6
    102 schema:sdDatePublished 2022-10-01T06:36
    103 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    104 schema:sdPublisher N49a6e260552b4cc2b829aabab80e75b9
    105 schema:url https://doi.org/10.1007/s11042-010-0689-6
    106 sgo:license sg:explorer/license/
    107 sgo:sdDataset articles
    108 rdf:type schema:ScholarlyArticle
    109 N08c08d93216347a484a8f9a61474aa2b rdf:first sg:person.010474635033.54
    110 rdf:rest N8d2b455da61c4a49909c29462c0f7858
    111 N2a6d034f67c342e2920b392889fef4cc rdf:first sg:person.013603475513.94
    112 rdf:rest N44a3cff17926435ca03ddcc538c7aa21
    113 N36b3fb0158064a0fbb130eb0585c1784 schema:issueNumber 1
    114 rdf:type schema:PublicationIssue
    115 N44a3cff17926435ca03ddcc538c7aa21 rdf:first sg:person.01165671765.01
    116 rdf:rest N68d4135d325649f8a0d3634ab59f3846
    117 N49a6e260552b4cc2b829aabab80e75b9 schema:name Springer Nature - SN SciGraph project
    118 rdf:type schema:Organization
    119 N52dfb46b5d5943c09dd5830e2506c385 schema:name doi
    120 schema:value 10.1007/s11042-010-0689-6
    121 rdf:type schema:PropertyValue
    122 N68d4135d325649f8a0d3634ab59f3846 rdf:first sg:person.016426034420.90
    123 rdf:rest Na75c4418430e42cabf2375a58135b0af
    124 N897f7730295e4404ad86218340b79742 schema:name dimensions_id
    125 schema:value pub.1032917986
    126 rdf:type schema:PropertyValue
    127 N8d2b455da61c4a49909c29462c0f7858 rdf:first sg:person.0635776571.01
    128 rdf:rest rdf:nil
    129 Na75c4418430e42cabf2375a58135b0af rdf:first sg:person.011046202211.48
    130 rdf:rest N08c08d93216347a484a8f9a61474aa2b
    131 Nd0487a2bcf4e46f68286a20dc66126f2 schema:volumeNumber 58
    132 rdf:type schema:PublicationVolume
    133 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    134 schema:name Information and Computing Sciences
    135 rdf:type schema:DefinedTerm
    136 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    137 schema:name Artificial Intelligence and Image Processing
    138 rdf:type schema:DefinedTerm
    139 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
    140 schema:name Information Systems
    141 rdf:type schema:DefinedTerm
    142 sg:journal.1044869 schema:issn 1380-7501
    143 1573-7721
    144 schema:name Multimedia Tools and Applications
    145 schema:publisher Springer Nature
    146 rdf:type schema:Periodical
    147 sg:person.010474635033.54 schema:affiliation grid-institutes:grid.9811.1
    148 schema:familyName Schaefer
    149 schema:givenName Matthias
    150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010474635033.54
    151 rdf:type schema:Person
    152 sg:person.011046202211.48 schema:affiliation grid-institutes:grid.443909.3
    153 schema:familyName Barrios
    154 schema:givenName Juan Manuel
    155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011046202211.48
    156 rdf:type schema:Person
    157 sg:person.01165671765.01 schema:affiliation grid-institutes:grid.6546.1
    158 schema:familyName Schreck
    159 schema:givenName Tobias
    160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01165671765.01
    161 rdf:type schema:Person
    162 sg:person.013603475513.94 schema:affiliation grid-institutes:grid.443909.3
    163 schema:familyName Bustos
    164 schema:givenName Benjamin
    165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013603475513.94
    166 rdf:type schema:Person
    167 sg:person.016426034420.90 schema:affiliation grid-institutes:grid.6546.1
    168 schema:familyName Walter
    169 schema:givenName Michael
    170 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016426034420.90
    171 rdf:type schema:Person
    172 sg:person.0635776571.01 schema:affiliation grid-institutes:grid.9811.1
    173 schema:familyName Keim
    174 schema:givenName Daniel
    175 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0635776571.01
    176 rdf:type schema:Person
    177 sg:pub.10.1007/s00799-005-0122-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010004503
    178 https://doi.org/10.1007/s00799-005-0122-3
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1007/s11042-007-0181-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027941864
    181 https://doi.org/10.1007/s11042-007-0181-0
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1007/s11042-007-0188-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045073501
    184 https://doi.org/10.1007/s11042-007-0188-6
    185 rdf:type schema:CreativeWork
    186 sg:pub.10.1023/b:visi.0000029664.99615.94 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052687286
    187 https://doi.org/10.1023/b:visi.0000029664.99615.94
    188 rdf:type schema:CreativeWork
    189 grid-institutes:grid.443909.3 schema:alternateName Department of Computer Science, University of Chile, Av. Blanco Encalada 2120 3er Piso, 8370459, Santiago, Chile
    190 schema:name Department of Computer Science, University of Chile, Av. Blanco Encalada 2120 3er Piso, 8370459, Santiago, Chile
    191 rdf:type schema:Organization
    192 grid-institutes:grid.6546.1 schema:alternateName Department of Computer Science, Technische Universitaet Darmstadt, Fraunhoferstrasse 5, 64283, Darmstadt, Germany
    193 schema:name Department of Computer Science, Technische Universitaet Darmstadt, Fraunhoferstrasse 5, 64283, Darmstadt, Germany
    194 rdf:type schema:Organization
    195 grid-institutes:grid.9811.1 schema:alternateName Department of Computer Science, University of Konstanz, Universitaetsstrasse 10, 78457, Konstanz, Germany
    196 schema:name Department of Computer Science, University of Konstanz, Universitaetsstrasse 10, 78457, Konstanz, Germany
    197 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...