Mental image search by boolean composition of region categories View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2006-10

AUTHORS

Julien Fauqueur, Nozha Boujemaa

ABSTRACT

Existing content-based image retrieval paradigms almost never address the problem of starting the search, when the user has no starting example image but rather a mental image. We propose a new image retrieval system to allow the user to perform mental image search by formulating boolean composition of region categories. The query interface is a region photometric thesaurus which can be viewed as a visual summary of salient regions available in the database. It is generated from the unsupervised clustering of regions with similar visual content into categories. In this thesaurus, the user simply selects the types of regions which should and should not be present in the mental image (boolean composition). The natural use of inverted tables on the region category labels enables powerful boolean search and very fast retrieval in large image databases. The process of query and search of images relates to that of documents with Google. The indexing scheme is fully unsupervised and the query mode requires minimal user interaction (no example image to provide, no sketch to draw). We demonstrate the feasibility of such a framework to reach the user mental target image with two applications: a photo-agency scenario on Corel Photostock and a TV news scenario. Perspectives will be proposed for this simple and innovative framework, which should motivate further development in various research areas. More... »

PAGES

95-117

References to SciGraph publications

  • 1981. Pattern Recognition with Fuzzy Objective Function Algorithms in NONE
  • 1997. Self-Organizing Maps in NONE
  • 2002-07-02. Visualization of Information Spaces to Retrieve and Browse Image Data in VISUAL INFORMATION AND INFORMATION SYSTEMS
  • 1991-11. Color indexing in INTERNATIONAL JOURNAL OF COMPUTER VISION
  • 2002-07-02. Region Queries without Segmentation for Image Retrieval by Content in VISUAL INFORMATION AND INFORMATION SYSTEMS
  • 2002-07-02. Blobworld: A System for Region-Based Image Indexing and Retrieval in VISUAL INFORMATION AND INFORMATION SYSTEMS
  • 1999-05. NeTra: A toolbox for navigating large image databases in MULTIMEDIA SYSTEMS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11042-006-0033-3

    DOI

    http://dx.doi.org/10.1007/s11042-006-0033-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1053479040


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Artificial Intelligence and Image Processing", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Projet IMEDIA - INRIA, BP 105, 78153, Le Chesnay, Cedex, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fauqueur", 
            "givenName": "Julien", 
            "id": "sg:person.07410261722.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07410261722.11"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Projet IMEDIA - INRIA, BP 105, 78153, Le Chesnay, Cedex, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Boujemaa", 
            "givenName": "Nozha", 
            "id": "sg:person.012516275274.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012516275274.26"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1145/319878.319881", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001497624"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1117/12.234781", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005683708"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00130487", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008598522", 
              "https://doi.org/10.1007/bf00130487"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00130487", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008598522", 
              "https://doi.org/10.1007/bf00130487"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-0450-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011935162", 
              "https://doi.org/10.1007/978-1-4757-0450-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-0450-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011935162", 
              "https://doi.org/10.1007/978-1-4757-0450-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/290941.291000", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012314416"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0031-3203(96)00140-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014421696"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/365024.365097", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015053384"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1117/12.143648", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015213336"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/(sici)1097-4571(19980515)49:7<633::aid-asi5>3.0.co;2-n", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017307082"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0005-1098(78)90005-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018373874"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0005-1098(78)90005-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018373874"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-48762-x_20", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018642408", 
              "https://doi.org/10.1007/3-540-48762-x_20"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-48762-x_20", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018642408", 
              "https://doi.org/10.1007/3-540-48762-x_20"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/290747.290799", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020004196"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-97966-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026409031", 
              "https://doi.org/10.1007/978-3-642-97966-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-97966-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026409031", 
              "https://doi.org/10.1007/978-3-642-97966-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/244130.244151", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027377222"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1145/313238.313290", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028044966"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jvlc.2003.08.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039031384"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jvlc.2003.08.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039031384"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0167-8655(00)00081-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039580734"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s005300050121", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044518018", 
              "https://doi.org/10.1007/s005300050121"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-48762-x_15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047422524", 
              "https://doi.org/10.1007/3-540-48762-x_15"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-48762-x_15", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047422524", 
              "https://doi.org/10.1007/3-540-48762-x_15"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-48762-x_63", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047688119", 
              "https://doi.org/10.1007/3-540-48762-x_63"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/3-540-48762-x_63", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047688119", 
              "https://doi.org/10.1007/3-540-48762-x_63"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jvlc.1997.0054", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052501380"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/2.410146", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061105483"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/34.574790", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061156537"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/34.895972", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061157192"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/83.817596", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061240035"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tcom.1980.1094577", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061552708"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/mmcs.1999.779254", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1093412033"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icip.1997.638621", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094003728"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icassp.1999.757476", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094312128"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icpr.2002.1044678", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094409341"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iciap.2001.957039", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094663548"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/ivl.2001.990853", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094798206"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/iccv.2003.1238663", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1094978467"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/ivl.1997.629714", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095024520"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/icip.2002.1040020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095186596"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/ivl.1999.781130", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1095407684"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2006-10", 
        "datePublishedReg": "2006-10-01", 
        "description": "Existing content-based image retrieval paradigms almost never address the problem of starting the search, when the user has no starting example image but rather a mental image. We propose a new image retrieval system to allow the user to perform mental image search by formulating boolean composition of region categories. The query interface is a region photometric thesaurus which can be viewed as a visual summary of salient regions available in the database. It is generated from the unsupervised clustering of regions with similar visual content into categories. In this thesaurus, the user simply selects the types of regions which should and should not be present in the mental image (boolean composition). The natural use of inverted tables on the region category labels enables powerful boolean search and very fast retrieval in large image databases. The process of query and search of images relates to that of documents with Google. The indexing scheme is fully unsupervised and the query mode requires minimal user interaction (no example image to provide, no sketch to draw). We demonstrate the feasibility of such a framework to reach the user mental target image with two applications: a photo-agency scenario on Corel Photostock and a TV news scenario. Perspectives will be proposed for this simple and innovative framework, which should motivate further development in various research areas.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11042-006-0033-3", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1044869", 
            "issn": [
              "1380-7501", 
              "1573-7721"
            ], 
            "name": "Multimedia Tools and Applications", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "31"
          }
        ], 
        "name": "Mental image search by boolean composition of region categories", 
        "pagination": "95-117", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "feb9fbf5494f6cb36fb51445d302a6bdb1a06562c48f6acddaf9208bb929e844"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11042-006-0033-3"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1053479040"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11042-006-0033-3", 
          "https://app.dimensions.ai/details/publication/pub.1053479040"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T16:43", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000516.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs11042-006-0033-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11042-006-0033-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11042-006-0033-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11042-006-0033-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11042-006-0033-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    184 TRIPLES      21 PREDICATES      63 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11042-006-0033-3 schema:about anzsrc-for:08
    2 anzsrc-for:0801
    3 schema:author N5c9e8cb326e048709578a737742f6a7c
    4 schema:citation sg:pub.10.1007/3-540-48762-x_15
    5 sg:pub.10.1007/3-540-48762-x_20
    6 sg:pub.10.1007/3-540-48762-x_63
    7 sg:pub.10.1007/978-1-4757-0450-1
    8 sg:pub.10.1007/978-3-642-97966-8
    9 sg:pub.10.1007/bf00130487
    10 sg:pub.10.1007/s005300050121
    11 https://doi.org/10.1002/(sici)1097-4571(19980515)49:7<633::aid-asi5>3.0.co;2-n
    12 https://doi.org/10.1006/jvlc.1997.0054
    13 https://doi.org/10.1016/0005-1098(78)90005-5
    14 https://doi.org/10.1016/j.jvlc.2003.08.002
    15 https://doi.org/10.1016/s0031-3203(96)00140-9
    16 https://doi.org/10.1016/s0167-8655(00)00081-7
    17 https://doi.org/10.1109/2.410146
    18 https://doi.org/10.1109/34.574790
    19 https://doi.org/10.1109/34.895972
    20 https://doi.org/10.1109/83.817596
    21 https://doi.org/10.1109/icassp.1999.757476
    22 https://doi.org/10.1109/iccv.2003.1238663
    23 https://doi.org/10.1109/iciap.2001.957039
    24 https://doi.org/10.1109/icip.1997.638621
    25 https://doi.org/10.1109/icip.2002.1040020
    26 https://doi.org/10.1109/icpr.2002.1044678
    27 https://doi.org/10.1109/ivl.1997.629714
    28 https://doi.org/10.1109/ivl.1999.781130
    29 https://doi.org/10.1109/ivl.2001.990853
    30 https://doi.org/10.1109/mmcs.1999.779254
    31 https://doi.org/10.1109/tcom.1980.1094577
    32 https://doi.org/10.1117/12.143648
    33 https://doi.org/10.1117/12.234781
    34 https://doi.org/10.1145/244130.244151
    35 https://doi.org/10.1145/290747.290799
    36 https://doi.org/10.1145/290941.291000
    37 https://doi.org/10.1145/313238.313290
    38 https://doi.org/10.1145/319878.319881
    39 https://doi.org/10.1145/365024.365097
    40 schema:datePublished 2006-10
    41 schema:datePublishedReg 2006-10-01
    42 schema:description Existing content-based image retrieval paradigms almost never address the problem of starting the search, when the user has no starting example image but rather a mental image. We propose a new image retrieval system to allow the user to perform mental image search by formulating boolean composition of region categories. The query interface is a region photometric thesaurus which can be viewed as a visual summary of salient regions available in the database. It is generated from the unsupervised clustering of regions with similar visual content into categories. In this thesaurus, the user simply selects the types of regions which should and should not be present in the mental image (boolean composition). The natural use of inverted tables on the region category labels enables powerful boolean search and very fast retrieval in large image databases. The process of query and search of images relates to that of documents with Google. The indexing scheme is fully unsupervised and the query mode requires minimal user interaction (no example image to provide, no sketch to draw). We demonstrate the feasibility of such a framework to reach the user mental target image with two applications: a photo-agency scenario on Corel Photostock and a TV news scenario. Perspectives will be proposed for this simple and innovative framework, which should motivate further development in various research areas.
    43 schema:genre research_article
    44 schema:inLanguage en
    45 schema:isAccessibleForFree true
    46 schema:isPartOf N58518ebaec1e448c8cb86d392edfd6e6
    47 Nadad9285411c4843965ba9b6e79f8a77
    48 sg:journal.1044869
    49 schema:name Mental image search by boolean composition of region categories
    50 schema:pagination 95-117
    51 schema:productId N0b1fab83cf7b422291b6c2ef1bc3d06d
    52 N43feec159c804961a40abf7a840a68ed
    53 N4b9f0f59136f4956814e68aaf01547d3
    54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053479040
    55 https://doi.org/10.1007/s11042-006-0033-3
    56 schema:sdDatePublished 2019-04-10T16:43
    57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    58 schema:sdPublisher Ndac99c4e585342c7af84a5b1b9415718
    59 schema:url http://link.springer.com/10.1007%2Fs11042-006-0033-3
    60 sgo:license sg:explorer/license/
    61 sgo:sdDataset articles
    62 rdf:type schema:ScholarlyArticle
    63 N0b1fab83cf7b422291b6c2ef1bc3d06d schema:name readcube_id
    64 schema:value feb9fbf5494f6cb36fb51445d302a6bdb1a06562c48f6acddaf9208bb929e844
    65 rdf:type schema:PropertyValue
    66 N1cf6908820f443098eb127ba79a0d73e rdf:first sg:person.012516275274.26
    67 rdf:rest rdf:nil
    68 N43feec159c804961a40abf7a840a68ed schema:name dimensions_id
    69 schema:value pub.1053479040
    70 rdf:type schema:PropertyValue
    71 N4b9f0f59136f4956814e68aaf01547d3 schema:name doi
    72 schema:value 10.1007/s11042-006-0033-3
    73 rdf:type schema:PropertyValue
    74 N58518ebaec1e448c8cb86d392edfd6e6 schema:volumeNumber 31
    75 rdf:type schema:PublicationVolume
    76 N5c9e8cb326e048709578a737742f6a7c rdf:first sg:person.07410261722.11
    77 rdf:rest N1cf6908820f443098eb127ba79a0d73e
    78 Nadad9285411c4843965ba9b6e79f8a77 schema:issueNumber 1
    79 rdf:type schema:PublicationIssue
    80 Nb01d733653db4f06abf89544cc7149f6 schema:name Projet IMEDIA - INRIA, BP 105, 78153, Le Chesnay, Cedex, France
    81 rdf:type schema:Organization
    82 Ndac99c4e585342c7af84a5b1b9415718 schema:name Springer Nature - SN SciGraph project
    83 rdf:type schema:Organization
    84 Ne0ddc608610f4492a0ce718e2e3e5efc schema:name Projet IMEDIA - INRIA, BP 105, 78153, Le Chesnay, Cedex, France
    85 rdf:type schema:Organization
    86 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    87 schema:name Information and Computing Sciences
    88 rdf:type schema:DefinedTerm
    89 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
    90 schema:name Artificial Intelligence and Image Processing
    91 rdf:type schema:DefinedTerm
    92 sg:journal.1044869 schema:issn 1380-7501
    93 1573-7721
    94 schema:name Multimedia Tools and Applications
    95 rdf:type schema:Periodical
    96 sg:person.012516275274.26 schema:affiliation Ne0ddc608610f4492a0ce718e2e3e5efc
    97 schema:familyName Boujemaa
    98 schema:givenName Nozha
    99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012516275274.26
    100 rdf:type schema:Person
    101 sg:person.07410261722.11 schema:affiliation Nb01d733653db4f06abf89544cc7149f6
    102 schema:familyName Fauqueur
    103 schema:givenName Julien
    104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07410261722.11
    105 rdf:type schema:Person
    106 sg:pub.10.1007/3-540-48762-x_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047422524
    107 https://doi.org/10.1007/3-540-48762-x_15
    108 rdf:type schema:CreativeWork
    109 sg:pub.10.1007/3-540-48762-x_20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018642408
    110 https://doi.org/10.1007/3-540-48762-x_20
    111 rdf:type schema:CreativeWork
    112 sg:pub.10.1007/3-540-48762-x_63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047688119
    113 https://doi.org/10.1007/3-540-48762-x_63
    114 rdf:type schema:CreativeWork
    115 sg:pub.10.1007/978-1-4757-0450-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011935162
    116 https://doi.org/10.1007/978-1-4757-0450-1
    117 rdf:type schema:CreativeWork
    118 sg:pub.10.1007/978-3-642-97966-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026409031
    119 https://doi.org/10.1007/978-3-642-97966-8
    120 rdf:type schema:CreativeWork
    121 sg:pub.10.1007/bf00130487 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008598522
    122 https://doi.org/10.1007/bf00130487
    123 rdf:type schema:CreativeWork
    124 sg:pub.10.1007/s005300050121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044518018
    125 https://doi.org/10.1007/s005300050121
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1002/(sici)1097-4571(19980515)49:7<633::aid-asi5>3.0.co;2-n schema:sameAs https://app.dimensions.ai/details/publication/pub.1017307082
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1006/jvlc.1997.0054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052501380
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1016/0005-1098(78)90005-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018373874
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1016/j.jvlc.2003.08.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039031384
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1016/s0031-3203(96)00140-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014421696
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1016/s0167-8655(00)00081-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039580734
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1109/2.410146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061105483
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1109/34.574790 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156537
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1109/34.895972 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061157192
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1109/83.817596 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061240035
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1109/icassp.1999.757476 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094312128
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1109/iccv.2003.1238663 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094978467
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1109/iciap.2001.957039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094663548
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1109/icip.1997.638621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094003728
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1109/icip.2002.1040020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095186596
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1109/icpr.2002.1044678 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094409341
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1109/ivl.1997.629714 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095024520
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.1109/ivl.1999.781130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095407684
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.1109/ivl.2001.990853 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094798206
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.1109/mmcs.1999.779254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093412033
    166 rdf:type schema:CreativeWork
    167 https://doi.org/10.1109/tcom.1980.1094577 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061552708
    168 rdf:type schema:CreativeWork
    169 https://doi.org/10.1117/12.143648 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015213336
    170 rdf:type schema:CreativeWork
    171 https://doi.org/10.1117/12.234781 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005683708
    172 rdf:type schema:CreativeWork
    173 https://doi.org/10.1145/244130.244151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027377222
    174 rdf:type schema:CreativeWork
    175 https://doi.org/10.1145/290747.290799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020004196
    176 rdf:type schema:CreativeWork
    177 https://doi.org/10.1145/290941.291000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012314416
    178 rdf:type schema:CreativeWork
    179 https://doi.org/10.1145/313238.313290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028044966
    180 rdf:type schema:CreativeWork
    181 https://doi.org/10.1145/319878.319881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001497624
    182 rdf:type schema:CreativeWork
    183 https://doi.org/10.1145/365024.365097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015053384
    184 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...