Mental image search by boolean composition of region categories View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2006-10

AUTHORS

Julien Fauqueur, Nozha Boujemaa

ABSTRACT

Existing content-based image retrieval paradigms almost never address the problem of starting the search, when the user has no starting example image but rather a mental image. We propose a new image retrieval system to allow the user to perform mental image search by formulating boolean composition of region categories. The query interface is a region photometric thesaurus which can be viewed as a visual summary of salient regions available in the database. It is generated from the unsupervised clustering of regions with similar visual content into categories. In this thesaurus, the user simply selects the types of regions which should and should not be present in the mental image (boolean composition). The natural use of inverted tables on the region category labels enables powerful boolean search and very fast retrieval in large image databases. The process of query and search of images relates to that of documents with Google. The indexing scheme is fully unsupervised and the query mode requires minimal user interaction (no example image to provide, no sketch to draw). We demonstrate the feasibility of such a framework to reach the user mental target image with two applications: a photo-agency scenario on Corel Photostock and a TV news scenario. Perspectives will be proposed for this simple and innovative framework, which should motivate further development in various research areas. More... »

PAGES

95-117

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11042-006-0033-3

DOI

http://dx.doi.org/10.1007/s11042-006-0033-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1053479040


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Projet IMEDIA - INRIA, BP 105, 78153, Le Chesnay, Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fauqueur", 
        "givenName": "Julien", 
        "id": "sg:person.07410261722.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07410261722.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Projet IMEDIA - INRIA, BP 105, 78153, Le Chesnay, Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Boujemaa", 
        "givenName": "Nozha", 
        "id": "sg:person.012516275274.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012516275274.26"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1145/319878.319881", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001497624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.234781", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005683708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00130487", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008598522", 
          "https://doi.org/10.1007/bf00130487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00130487", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008598522", 
          "https://doi.org/10.1007/bf00130487"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-0450-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011935162", 
          "https://doi.org/10.1007/978-1-4757-0450-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-0450-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011935162", 
          "https://doi.org/10.1007/978-1-4757-0450-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/290941.291000", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012314416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0031-3203(96)00140-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014421696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/365024.365097", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015053384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.143648", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015213336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-4571(19980515)49:7<633::aid-asi5>3.0.co;2-n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017307082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-1098(78)90005-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018373874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-1098(78)90005-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018373874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-48762-x_20", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018642408", 
          "https://doi.org/10.1007/3-540-48762-x_20"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-48762-x_20", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018642408", 
          "https://doi.org/10.1007/3-540-48762-x_20"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/290747.290799", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020004196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-97966-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026409031", 
          "https://doi.org/10.1007/978-3-642-97966-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-97966-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026409031", 
          "https://doi.org/10.1007/978-3-642-97966-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/244130.244151", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027377222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/313238.313290", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028044966"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jvlc.2003.08.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039031384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jvlc.2003.08.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039031384"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-8655(00)00081-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039580734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s005300050121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044518018", 
          "https://doi.org/10.1007/s005300050121"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-48762-x_15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047422524", 
          "https://doi.org/10.1007/3-540-48762-x_15"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-48762-x_15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047422524", 
          "https://doi.org/10.1007/3-540-48762-x_15"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-48762-x_63", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047688119", 
          "https://doi.org/10.1007/3-540-48762-x_63"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/3-540-48762-x_63", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047688119", 
          "https://doi.org/10.1007/3-540-48762-x_63"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jvlc.1997.0054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052501380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/2.410146", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061105483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.574790", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061156537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/34.895972", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061157192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/83.817596", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061240035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tcom.1980.1094577", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061552708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mmcs.1999.779254", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093412033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icip.1997.638621", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094003728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icassp.1999.757476", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094312128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icpr.2002.1044678", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094409341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iciap.2001.957039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094663548"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ivl.2001.990853", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094798206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/iccv.2003.1238663", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094978467"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ivl.1997.629714", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095024520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icip.2002.1040020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095186596"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ivl.1999.781130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1095407684"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-10", 
    "datePublishedReg": "2006-10-01", 
    "description": "Existing content-based image retrieval paradigms almost never address the problem of starting the search, when the user has no starting example image but rather a mental image. We propose a new image retrieval system to allow the user to perform mental image search by formulating boolean composition of region categories. The query interface is a region photometric thesaurus which can be viewed as a visual summary of salient regions available in the database. It is generated from the unsupervised clustering of regions with similar visual content into categories. In this thesaurus, the user simply selects the types of regions which should and should not be present in the mental image (boolean composition). The natural use of inverted tables on the region category labels enables powerful boolean search and very fast retrieval in large image databases. The process of query and search of images relates to that of documents with Google. The indexing scheme is fully unsupervised and the query mode requires minimal user interaction (no example image to provide, no sketch to draw). We demonstrate the feasibility of such a framework to reach the user mental target image with two applications: a photo-agency scenario on Corel Photostock and a TV news scenario. Perspectives will be proposed for this simple and innovative framework, which should motivate further development in various research areas.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11042-006-0033-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1044869", 
        "issn": [
          "1380-7501", 
          "1573-7721"
        ], 
        "name": "Multimedia Tools and Applications", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "31"
      }
    ], 
    "name": "Mental image search by boolean composition of region categories", 
    "pagination": "95-117", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "feb9fbf5494f6cb36fb51445d302a6bdb1a06562c48f6acddaf9208bb929e844"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11042-006-0033-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1053479040"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11042-006-0033-3", 
      "https://app.dimensions.ai/details/publication/pub.1053479040"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:43", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000516.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11042-006-0033-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11042-006-0033-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11042-006-0033-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11042-006-0033-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11042-006-0033-3'


 

This table displays all metadata directly associated to this object as RDF triples.

184 TRIPLES      21 PREDICATES      63 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11042-006-0033-3 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N28e9fa6d93cb4fa8918d3f8930edf664
4 schema:citation sg:pub.10.1007/3-540-48762-x_15
5 sg:pub.10.1007/3-540-48762-x_20
6 sg:pub.10.1007/3-540-48762-x_63
7 sg:pub.10.1007/978-1-4757-0450-1
8 sg:pub.10.1007/978-3-642-97966-8
9 sg:pub.10.1007/bf00130487
10 sg:pub.10.1007/s005300050121
11 https://doi.org/10.1002/(sici)1097-4571(19980515)49:7<633::aid-asi5>3.0.co;2-n
12 https://doi.org/10.1006/jvlc.1997.0054
13 https://doi.org/10.1016/0005-1098(78)90005-5
14 https://doi.org/10.1016/j.jvlc.2003.08.002
15 https://doi.org/10.1016/s0031-3203(96)00140-9
16 https://doi.org/10.1016/s0167-8655(00)00081-7
17 https://doi.org/10.1109/2.410146
18 https://doi.org/10.1109/34.574790
19 https://doi.org/10.1109/34.895972
20 https://doi.org/10.1109/83.817596
21 https://doi.org/10.1109/icassp.1999.757476
22 https://doi.org/10.1109/iccv.2003.1238663
23 https://doi.org/10.1109/iciap.2001.957039
24 https://doi.org/10.1109/icip.1997.638621
25 https://doi.org/10.1109/icip.2002.1040020
26 https://doi.org/10.1109/icpr.2002.1044678
27 https://doi.org/10.1109/ivl.1997.629714
28 https://doi.org/10.1109/ivl.1999.781130
29 https://doi.org/10.1109/ivl.2001.990853
30 https://doi.org/10.1109/mmcs.1999.779254
31 https://doi.org/10.1109/tcom.1980.1094577
32 https://doi.org/10.1117/12.143648
33 https://doi.org/10.1117/12.234781
34 https://doi.org/10.1145/244130.244151
35 https://doi.org/10.1145/290747.290799
36 https://doi.org/10.1145/290941.291000
37 https://doi.org/10.1145/313238.313290
38 https://doi.org/10.1145/319878.319881
39 https://doi.org/10.1145/365024.365097
40 schema:datePublished 2006-10
41 schema:datePublishedReg 2006-10-01
42 schema:description Existing content-based image retrieval paradigms almost never address the problem of starting the search, when the user has no starting example image but rather a mental image. We propose a new image retrieval system to allow the user to perform mental image search by formulating boolean composition of region categories. The query interface is a region photometric thesaurus which can be viewed as a visual summary of salient regions available in the database. It is generated from the unsupervised clustering of regions with similar visual content into categories. In this thesaurus, the user simply selects the types of regions which should and should not be present in the mental image (boolean composition). The natural use of inverted tables on the region category labels enables powerful boolean search and very fast retrieval in large image databases. The process of query and search of images relates to that of documents with Google. The indexing scheme is fully unsupervised and the query mode requires minimal user interaction (no example image to provide, no sketch to draw). We demonstrate the feasibility of such a framework to reach the user mental target image with two applications: a photo-agency scenario on Corel Photostock and a TV news scenario. Perspectives will be proposed for this simple and innovative framework, which should motivate further development in various research areas.
43 schema:genre research_article
44 schema:inLanguage en
45 schema:isAccessibleForFree true
46 schema:isPartOf Na94b804343144532af4dbd779f166b45
47 Ne99fbb41952143ab82e3731f7efe266a
48 sg:journal.1044869
49 schema:name Mental image search by boolean composition of region categories
50 schema:pagination 95-117
51 schema:productId N4c8d3256c96d4403992fb5614c8510bb
52 Na0c5434c52274d4ea2518ae5ed1e42bc
53 Nf215d2088a754bd98416357f628d00f9
54 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053479040
55 https://doi.org/10.1007/s11042-006-0033-3
56 schema:sdDatePublished 2019-04-10T16:43
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher N6173462930244d7995a62b323f4f8d00
59 schema:url http://link.springer.com/10.1007%2Fs11042-006-0033-3
60 sgo:license sg:explorer/license/
61 sgo:sdDataset articles
62 rdf:type schema:ScholarlyArticle
63 N28e9fa6d93cb4fa8918d3f8930edf664 rdf:first sg:person.07410261722.11
64 rdf:rest Ncce5059450d546d8bd763122b99e5b80
65 N4c8d3256c96d4403992fb5614c8510bb schema:name dimensions_id
66 schema:value pub.1053479040
67 rdf:type schema:PropertyValue
68 N6173462930244d7995a62b323f4f8d00 schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 N85d76d3ce0b94e7ebb2adb5c1d618384 schema:name Projet IMEDIA - INRIA, BP 105, 78153, Le Chesnay, Cedex, France
71 rdf:type schema:Organization
72 Na0c5434c52274d4ea2518ae5ed1e42bc schema:name doi
73 schema:value 10.1007/s11042-006-0033-3
74 rdf:type schema:PropertyValue
75 Na94b804343144532af4dbd779f166b45 schema:volumeNumber 31
76 rdf:type schema:PublicationVolume
77 Nb19bfc13cdab4066b1a0ff65710917fe schema:name Projet IMEDIA - INRIA, BP 105, 78153, Le Chesnay, Cedex, France
78 rdf:type schema:Organization
79 Ncce5059450d546d8bd763122b99e5b80 rdf:first sg:person.012516275274.26
80 rdf:rest rdf:nil
81 Ne99fbb41952143ab82e3731f7efe266a schema:issueNumber 1
82 rdf:type schema:PublicationIssue
83 Nf215d2088a754bd98416357f628d00f9 schema:name readcube_id
84 schema:value feb9fbf5494f6cb36fb51445d302a6bdb1a06562c48f6acddaf9208bb929e844
85 rdf:type schema:PropertyValue
86 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
87 schema:name Information and Computing Sciences
88 rdf:type schema:DefinedTerm
89 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
90 schema:name Artificial Intelligence and Image Processing
91 rdf:type schema:DefinedTerm
92 sg:journal.1044869 schema:issn 1380-7501
93 1573-7721
94 schema:name Multimedia Tools and Applications
95 rdf:type schema:Periodical
96 sg:person.012516275274.26 schema:affiliation Nb19bfc13cdab4066b1a0ff65710917fe
97 schema:familyName Boujemaa
98 schema:givenName Nozha
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012516275274.26
100 rdf:type schema:Person
101 sg:person.07410261722.11 schema:affiliation N85d76d3ce0b94e7ebb2adb5c1d618384
102 schema:familyName Fauqueur
103 schema:givenName Julien
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07410261722.11
105 rdf:type schema:Person
106 sg:pub.10.1007/3-540-48762-x_15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047422524
107 https://doi.org/10.1007/3-540-48762-x_15
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/3-540-48762-x_20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018642408
110 https://doi.org/10.1007/3-540-48762-x_20
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/3-540-48762-x_63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047688119
113 https://doi.org/10.1007/3-540-48762-x_63
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/978-1-4757-0450-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011935162
116 https://doi.org/10.1007/978-1-4757-0450-1
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/978-3-642-97966-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026409031
119 https://doi.org/10.1007/978-3-642-97966-8
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/bf00130487 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008598522
122 https://doi.org/10.1007/bf00130487
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/s005300050121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044518018
125 https://doi.org/10.1007/s005300050121
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1002/(sici)1097-4571(19980515)49:7<633::aid-asi5>3.0.co;2-n schema:sameAs https://app.dimensions.ai/details/publication/pub.1017307082
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1006/jvlc.1997.0054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052501380
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/0005-1098(78)90005-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018373874
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.jvlc.2003.08.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039031384
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/s0031-3203(96)00140-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014421696
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/s0167-8655(00)00081-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039580734
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1109/2.410146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061105483
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1109/34.574790 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061156537
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1109/34.895972 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061157192
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1109/83.817596 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061240035
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1109/icassp.1999.757476 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094312128
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1109/iccv.2003.1238663 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094978467
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1109/iciap.2001.957039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094663548
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1109/icip.1997.638621 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094003728
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1109/icip.2002.1040020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095186596
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1109/icpr.2002.1044678 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094409341
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1109/ivl.1997.629714 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095024520
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1109/ivl.1999.781130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1095407684
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1109/ivl.2001.990853 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094798206
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1109/mmcs.1999.779254 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093412033
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1109/tcom.1980.1094577 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061552708
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1117/12.143648 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015213336
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1117/12.234781 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005683708
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1145/244130.244151 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027377222
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1145/290747.290799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020004196
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1145/290941.291000 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012314416
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1145/313238.313290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028044966
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1145/319878.319881 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001497624
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1145/365024.365097 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015053384
184 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...