Formation of Transition Zones Under Spark Plasma Sintering of Dissimilar Steels View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-01

AUTHORS

A. A. Nikulina, V. S. Timofeev, I. N. Gradusov, A. S. Ivashutenko

ABSTRACT

Results of mathematical simulation of the distribution of the concentrations of carbon and alloying elements in the zone of interaction of dissimilar microvolumes formed by spark plasma sintering of particles of steels 12Kh18N10T and U8 at various sintering temperatures and times, results of investigations of the structure of the specimens, and results of a regression analysis of experimental data are presented. The laws of formation of transition zones are described with the use of regression analysis based on the generalized lambda-distribution and on the method of truncated least squares. The processed data make it possible to identify the effect of the sintering mode on the structure of the transition zones. The results of the diffraction studies and their statistical analysis prove the results of the statistical simulation of the chemical composition. More... »

PAGES

1-6

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11041-019-00337-x

DOI

http://dx.doi.org/10.1007/s11041-019-00337-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112471704


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Novosibirsk State Technical University", 
          "id": "https://www.grid.ac/institutes/grid.77667.37", 
          "name": [
            "Novosibirsk State Technical University, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nikulina", 
        "givenName": "A. A.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Novosibirsk State Technical University", 
          "id": "https://www.grid.ac/institutes/grid.77667.37", 
          "name": [
            "Novosibirsk State Technical University, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Timofeev", 
        "givenName": "V. S.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Novosibirsk State Technical University", 
          "id": "https://www.grid.ac/institutes/grid.77667.37", 
          "name": [
            "Novosibirsk State Technical University, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gradusov", 
        "givenName": "I. N.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tomsk Polytechnic University", 
          "id": "https://www.grid.ac/institutes/grid.27736.37", 
          "name": [
            "National Research Tomsk Polytechnic University, Tomsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ivashutenko", 
        "givenName": "A. S.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.msea.2009.03.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005290786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10618-005-0024-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014859262", 
          "https://doi.org/10.1007/s10618-005-0024-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmatprotec.2004.03.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031306993"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.precisioneng.2016.03.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035732273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2014.06.053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035760800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1179/1362171814y.0000000265", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036446125"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2010.12.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038498770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2015.07.068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040120617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matchar.2014.05.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045861944"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2016.06.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046014262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2016.06.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046014262"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10853-006-6555-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047620998", 
          "https://doi.org/10.1007/s10853-006-6555-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10853-006-6555-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047620998", 
          "https://doi.org/10.1007/s10853-006-6555-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2016.01.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053054160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2016.01.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053054160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2016.01.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053054160"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2016.01.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053054160"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03-01", 
    "datePublishedReg": "2019-03-01", 
    "description": "Results of mathematical simulation of the distribution of the concentrations of carbon and alloying elements in the zone of interaction of dissimilar microvolumes formed by spark plasma sintering of particles of steels 12Kh18N10T and U8 at various sintering temperatures and times, results of investigations of the structure of the specimens, and results of a regression analysis of experimental data are presented. The laws of formation of transition zones are described with the use of regression analysis based on the generalized lambda-distribution and on the method of truncated least squares. The processed data make it possible to identify the effect of the sintering mode on the structure of the transition zones. The results of the diffraction studies and their statistical analysis prove the results of the statistical simulation of the chemical composition.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11041-019-00337-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136227", 
        "issn": [
          "0026-0673", 
          "0026-0819"
        ], 
        "name": "Metal Science and Heat Treatment", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9-10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "60"
      }
    ], 
    "name": "Formation of Transition Zones Under Spark Plasma Sintering of Dissimilar Steels", 
    "pagination": "1-6", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "90f40b73dd04c6cd4efcde9839660340be66f7e6eaea63ee45a42bc93dbc7291"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11041-019-00337-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112471704"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11041-019-00337-x", 
      "https://app.dimensions.ai/details/publication/pub.1112471704"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000371_0000000371/records_130817_00000006.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11041-019-00337-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11041-019-00337-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11041-019-00337-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11041-019-00337-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11041-019-00337-x'


 

This table displays all metadata directly associated to this object as RDF triples.

119 TRIPLES      21 PREDICATES      38 URIs      18 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11041-019-00337-x schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Nb33054e208594004b4798339bdaa14c5
4 schema:citation sg:pub.10.1007/s10618-005-0024-4
5 sg:pub.10.1007/s10853-006-6555-2
6 https://doi.org/10.1016/j.jmatprotec.2004.03.012
7 https://doi.org/10.1016/j.matchar.2014.05.001
8 https://doi.org/10.1016/j.matdes.2010.12.011
9 https://doi.org/10.1016/j.matdes.2014.06.053
10 https://doi.org/10.1016/j.matdes.2015.07.068
11 https://doi.org/10.1016/j.matdes.2016.01.041
12 https://doi.org/10.1016/j.msea.2009.03.021
13 https://doi.org/10.1016/j.msea.2016.06.003
14 https://doi.org/10.1016/j.precisioneng.2016.03.016
15 https://doi.org/10.1179/1362171814y.0000000265
16 schema:datePublished 2019-03-01
17 schema:datePublishedReg 2019-03-01
18 schema:description Results of mathematical simulation of the distribution of the concentrations of carbon and alloying elements in the zone of interaction of dissimilar microvolumes formed by spark plasma sintering of particles of steels 12Kh18N10T and U8 at various sintering temperatures and times, results of investigations of the structure of the specimens, and results of a regression analysis of experimental data are presented. The laws of formation of transition zones are described with the use of regression analysis based on the generalized lambda-distribution and on the method of truncated least squares. The processed data make it possible to identify the effect of the sintering mode on the structure of the transition zones. The results of the diffraction studies and their statistical analysis prove the results of the statistical simulation of the chemical composition.
19 schema:genre research_article
20 schema:inLanguage en
21 schema:isAccessibleForFree false
22 schema:isPartOf N2597135d016f41e585bc729bdfebd5ef
23 N9a10a2c455f444c4b5e9fc5e51f3f944
24 sg:journal.1136227
25 schema:name Formation of Transition Zones Under Spark Plasma Sintering of Dissimilar Steels
26 schema:pagination 1-6
27 schema:productId N099f5c21d5d946a2ad25f9c8c0f712fe
28 Nccf0273010d8453395d8fe710ebc5b80
29 Ndd34b732397f430cb832eac44fe9b75f
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112471704
31 https://doi.org/10.1007/s11041-019-00337-x
32 schema:sdDatePublished 2019-04-11T13:57
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher Nb485c6f3a080462c9af45e69a831db61
35 schema:url https://link.springer.com/10.1007%2Fs11041-019-00337-x
36 sgo:license sg:explorer/license/
37 sgo:sdDataset articles
38 rdf:type schema:ScholarlyArticle
39 N099f5c21d5d946a2ad25f9c8c0f712fe schema:name doi
40 schema:value 10.1007/s11041-019-00337-x
41 rdf:type schema:PropertyValue
42 N2597135d016f41e585bc729bdfebd5ef schema:volumeNumber 60
43 rdf:type schema:PublicationVolume
44 N761d6686427d4141937463a3d954fbed schema:affiliation https://www.grid.ac/institutes/grid.77667.37
45 schema:familyName Gradusov
46 schema:givenName I. N.
47 rdf:type schema:Person
48 N9a10a2c455f444c4b5e9fc5e51f3f944 schema:issueNumber 9-10
49 rdf:type schema:PublicationIssue
50 Na1fb72508e8842ca9dc4aacf8e9015bb rdf:first Nd7284f60a9ff4cf0aba1f1c7b52235db
51 rdf:rest rdf:nil
52 Na68a568317304f11ab27314a5f018a10 schema:affiliation https://www.grid.ac/institutes/grid.77667.37
53 schema:familyName Nikulina
54 schema:givenName A. A.
55 rdf:type schema:Person
56 Nb33054e208594004b4798339bdaa14c5 rdf:first Na68a568317304f11ab27314a5f018a10
57 rdf:rest Nd9fc503675fe4afc9df07a073bd0d69b
58 Nb4198417331d46208270a6c278997d1e rdf:first N761d6686427d4141937463a3d954fbed
59 rdf:rest Na1fb72508e8842ca9dc4aacf8e9015bb
60 Nb485c6f3a080462c9af45e69a831db61 schema:name Springer Nature - SN SciGraph project
61 rdf:type schema:Organization
62 Nccf0273010d8453395d8fe710ebc5b80 schema:name readcube_id
63 schema:value 90f40b73dd04c6cd4efcde9839660340be66f7e6eaea63ee45a42bc93dbc7291
64 rdf:type schema:PropertyValue
65 Nd7284f60a9ff4cf0aba1f1c7b52235db schema:affiliation https://www.grid.ac/institutes/grid.27736.37
66 schema:familyName Ivashutenko
67 schema:givenName A. S.
68 rdf:type schema:Person
69 Nd9fc503675fe4afc9df07a073bd0d69b rdf:first Ne0f401e005b54cedb573c1f65512b4e9
70 rdf:rest Nb4198417331d46208270a6c278997d1e
71 Ndd34b732397f430cb832eac44fe9b75f schema:name dimensions_id
72 schema:value pub.1112471704
73 rdf:type schema:PropertyValue
74 Ne0f401e005b54cedb573c1f65512b4e9 schema:affiliation https://www.grid.ac/institutes/grid.77667.37
75 schema:familyName Timofeev
76 schema:givenName V. S.
77 rdf:type schema:Person
78 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
79 schema:name Mathematical Sciences
80 rdf:type schema:DefinedTerm
81 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
82 schema:name Statistics
83 rdf:type schema:DefinedTerm
84 sg:journal.1136227 schema:issn 0026-0673
85 0026-0819
86 schema:name Metal Science and Heat Treatment
87 rdf:type schema:Periodical
88 sg:pub.10.1007/s10618-005-0024-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014859262
89 https://doi.org/10.1007/s10618-005-0024-4
90 rdf:type schema:CreativeWork
91 sg:pub.10.1007/s10853-006-6555-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047620998
92 https://doi.org/10.1007/s10853-006-6555-2
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1016/j.jmatprotec.2004.03.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031306993
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1016/j.matchar.2014.05.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045861944
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1016/j.matdes.2010.12.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038498770
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/j.matdes.2014.06.053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035760800
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/j.matdes.2015.07.068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040120617
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/j.matdes.2016.01.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053054160
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/j.msea.2009.03.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005290786
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/j.msea.2016.06.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046014262
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/j.precisioneng.2016.03.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035732273
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1179/1362171814y.0000000265 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036446125
113 rdf:type schema:CreativeWork
114 https://www.grid.ac/institutes/grid.27736.37 schema:alternateName Tomsk Polytechnic University
115 schema:name National Research Tomsk Polytechnic University, Tomsk, Russia
116 rdf:type schema:Organization
117 https://www.grid.ac/institutes/grid.77667.37 schema:alternateName Novosibirsk State Technical University
118 schema:name Novosibirsk State Technical University, Novosibirsk, Russia
119 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...