Phase Transition and Critical Values of a Nearest-Neighbor System with Uncountable Local State Space on Cayley Trees View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-12-01

AUTHORS

Benedikt Jahnel, Christof Külske, Golibjon I. Botirov

ABSTRACT

We consider a ferromagnetic nearest-neighbor model on a Cayley tree of degree k≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$k\geqslant 2$\end{document} with uncountable local state space [0,1] where the energy function depends on a parameter 𝜃 ∈[0, 1). We show that for 0≤𝜃≤53k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0\leqslant \theta \leqslant \frac {5}{3k}$\end{document} the model has a unique translation-invariant Gibbs measure. If 53k<𝜃<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac {5}{3k}<\theta <1$\end{document} there is a phase transition, in particular there are three translation-invariant Gibbs measures. More... »

PAGES

323-331

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11040-014-9158-1

DOI

http://dx.doi.org/10.1007/s11040-014-9158-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020064246


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Fakult\u00e4t f\u00fcr Mathematik, Ruhr-Universit\u00e4t Bochum, D44801, Bochum, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5570.7", 
          "name": [
            "Fakult\u00e4t f\u00fcr Mathematik, Ruhr-Universit\u00e4t Bochum, D44801, Bochum, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jahnel", 
        "givenName": "Benedikt", 
        "id": "sg:person.07676354737.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07676354737.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fakult\u00e4t f\u00fcr Mathematik, Ruhr-Universit\u00e4t Bochum, D44801, Bochum, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5570.7", 
          "name": [
            "Fakult\u00e4t f\u00fcr Mathematik, Ruhr-Universit\u00e4t Bochum, D44801, Bochum, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "K\u00fclske", 
        "givenName": "Christof", 
        "id": "sg:person.0645603311.59", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645603311.59"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Faculty of Physics and Mathematics, Bukhara State University, Bukhara, Uzbekistan", 
          "id": "http://www.grid.ac/institutes/grid.444580.9", 
          "name": [
            "Faculty of Physics and Mathematics, Bukhara State University, Bukhara, Uzbekistan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Botirov", 
        "givenName": "Golibjon I.", 
        "id": "sg:person.011560566143.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011560566143.19"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-642-69409-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109710580", 
          "https://doi.org/10.1007/978-3-642-69409-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11040-010-9079-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032764230", 
          "https://doi.org/10.1007/s11040-010-9079-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10955-012-0494-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033373089", 
          "https://doi.org/10.1007/s10955-012-0494-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1995080213030050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017764168", 
          "https://doi.org/10.1134/s1995080213030050"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-12-01", 
    "datePublishedReg": "2014-12-01", 
    "description": "We consider a ferromagnetic nearest-neighbor model on a Cayley tree of degree k\u22652\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$k\\geqslant 2$\\end{document} with uncountable local state space [0,1] where the energy function depends on a parameter \ud835\udf03 \u2208[0, 1). We show that for 0\u2264\ud835\udf03\u226453k\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$0\\leqslant \\theta \\leqslant \\frac {5}{3k}$\\end{document} the model has a unique translation-invariant Gibbs measure. If 53k<\ud835\udf03<1\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$\\frac {5}{3k}<\\theta <1$\\end{document} there is a phase transition, in particular there are three translation-invariant Gibbs measures.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11040-014-9158-1", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135920", 
        "issn": [
          "1385-0172", 
          "1572-9656"
        ], 
        "name": "Mathematical Physics, Analysis and Geometry", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "17"
      }
    ], 
    "keywords": [
      "space", 
      "nearest-neighbor model", 
      "model", 
      "trees", 
      "degree", 
      "local state space", 
      "state space", 
      "energy function", 
      "function", 
      "parameters", 
      "measures", 
      "phase transition", 
      "transition", 
      "critical value", 
      "values", 
      "system", 
      "ferromagnetic nearest-neighbor model", 
      "Cayley tree", 
      "uncountable local state space", 
      "unique translation-invariant Gibbs measure", 
      "translation-invariant Gibbs measures", 
      "Gibbs measures", 
      "Nearest-Neighbor System"
    ], 
    "name": "Phase Transition and Critical Values of a Nearest-Neighbor System with Uncountable Local State Space on Cayley Trees", 
    "pagination": "323-331", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020064246"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11040-014-9158-1"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11040-014-9158-1", 
      "https://app.dimensions.ai/details/publication/pub.1020064246"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_621.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11040-014-9158-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11040-014-9158-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11040-014-9158-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11040-014-9158-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11040-014-9158-1'


 

This table displays all metadata directly associated to this object as RDF triples.

114 TRIPLES      22 PREDICATES      52 URIs      40 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11040-014-9158-1 schema:about anzsrc-for:01
2 anzsrc-for:02
3 schema:author N4ec9fd471f2742b98031f77687d7e3d7
4 schema:citation sg:pub.10.1007/978-3-642-69409-7
5 sg:pub.10.1007/s10955-012-0494-x
6 sg:pub.10.1007/s11040-010-9079-6
7 sg:pub.10.1134/s1995080213030050
8 schema:datePublished 2014-12-01
9 schema:datePublishedReg 2014-12-01
10 schema:description We consider a ferromagnetic nearest-neighbor model on a Cayley tree of degree k≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$k\geqslant 2$\end{document} with uncountable local state space [0,1] where the energy function depends on a parameter 𝜃 ∈[0, 1). We show that for 0≤𝜃≤53k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0\leqslant \theta \leqslant \frac {5}{3k}$\end{document} the model has a unique translation-invariant Gibbs measure. If 53k<𝜃<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac {5}{3k}<\theta <1$\end{document} there is a phase transition, in particular there are three translation-invariant Gibbs measures.
11 schema:genre article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N2d3f4dce312a44369bfd0b921d023217
15 Ndb328cc893174620b2c61659259407e3
16 sg:journal.1135920
17 schema:keywords Cayley tree
18 Gibbs measures
19 Nearest-Neighbor System
20 critical value
21 degree
22 energy function
23 ferromagnetic nearest-neighbor model
24 function
25 local state space
26 measures
27 model
28 nearest-neighbor model
29 parameters
30 phase transition
31 space
32 state space
33 system
34 transition
35 translation-invariant Gibbs measures
36 trees
37 uncountable local state space
38 unique translation-invariant Gibbs measure
39 values
40 schema:name Phase Transition and Critical Values of a Nearest-Neighbor System with Uncountable Local State Space on Cayley Trees
41 schema:pagination 323-331
42 schema:productId Nce71b0f911144d02babb823f3191c7c6
43 Ne4852bf808044585a1e61634d9475cfa
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020064246
45 https://doi.org/10.1007/s11040-014-9158-1
46 schema:sdDatePublished 2022-01-01T18:32
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher N6a42e3494adc4879b62327a8f6c91a3f
49 schema:url https://doi.org/10.1007/s11040-014-9158-1
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N2d3f4dce312a44369bfd0b921d023217 schema:issueNumber 3-4
54 rdf:type schema:PublicationIssue
55 N3947eb046fca4309b44c35b3cc6b7c86 rdf:first sg:person.011560566143.19
56 rdf:rest rdf:nil
57 N4ec9fd471f2742b98031f77687d7e3d7 rdf:first sg:person.07676354737.57
58 rdf:rest Ne76080ff194144c5a10e995e4f4f6808
59 N6a42e3494adc4879b62327a8f6c91a3f schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 Nce71b0f911144d02babb823f3191c7c6 schema:name dimensions_id
62 schema:value pub.1020064246
63 rdf:type schema:PropertyValue
64 Ndb328cc893174620b2c61659259407e3 schema:volumeNumber 17
65 rdf:type schema:PublicationVolume
66 Ne4852bf808044585a1e61634d9475cfa schema:name doi
67 schema:value 10.1007/s11040-014-9158-1
68 rdf:type schema:PropertyValue
69 Ne76080ff194144c5a10e995e4f4f6808 rdf:first sg:person.0645603311.59
70 rdf:rest N3947eb046fca4309b44c35b3cc6b7c86
71 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
72 schema:name Mathematical Sciences
73 rdf:type schema:DefinedTerm
74 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
75 schema:name Physical Sciences
76 rdf:type schema:DefinedTerm
77 sg:journal.1135920 schema:issn 1385-0172
78 1572-9656
79 schema:name Mathematical Physics, Analysis and Geometry
80 schema:publisher Springer Nature
81 rdf:type schema:Periodical
82 sg:person.011560566143.19 schema:affiliation grid-institutes:grid.444580.9
83 schema:familyName Botirov
84 schema:givenName Golibjon I.
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011560566143.19
86 rdf:type schema:Person
87 sg:person.0645603311.59 schema:affiliation grid-institutes:grid.5570.7
88 schema:familyName Külske
89 schema:givenName Christof
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0645603311.59
91 rdf:type schema:Person
92 sg:person.07676354737.57 schema:affiliation grid-institutes:grid.5570.7
93 schema:familyName Jahnel
94 schema:givenName Benedikt
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07676354737.57
96 rdf:type schema:Person
97 sg:pub.10.1007/978-3-642-69409-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109710580
98 https://doi.org/10.1007/978-3-642-69409-7
99 rdf:type schema:CreativeWork
100 sg:pub.10.1007/s10955-012-0494-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1033373089
101 https://doi.org/10.1007/s10955-012-0494-x
102 rdf:type schema:CreativeWork
103 sg:pub.10.1007/s11040-010-9079-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032764230
104 https://doi.org/10.1007/s11040-010-9079-6
105 rdf:type schema:CreativeWork
106 sg:pub.10.1134/s1995080213030050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017764168
107 https://doi.org/10.1134/s1995080213030050
108 rdf:type schema:CreativeWork
109 grid-institutes:grid.444580.9 schema:alternateName Faculty of Physics and Mathematics, Bukhara State University, Bukhara, Uzbekistan
110 schema:name Faculty of Physics and Mathematics, Bukhara State University, Bukhara, Uzbekistan
111 rdf:type schema:Organization
112 grid-institutes:grid.5570.7 schema:alternateName Fakultät für Mathematik, Ruhr-Universität Bochum, D44801, Bochum, Germany
113 schema:name Fakultät für Mathematik, Ruhr-Universität Bochum, D44801, Bochum, Germany
114 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...