Uniqueness of Gibbs Measure for Models with Uncountable Set of Spin Values on a Cayley Tree View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-08-11

AUTHORS

Yu. Kh. Eshkabilov, F. H. Haydarov, U. A. Rozikov

ABSTRACT

We consider models with nearest-neighbor interactions and with the set [0, 1] of spin values, on a Cayley tree of order \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$k\geqslant 1$\end{document}. It is known that the ‘splitting Gibbs measures’ of the model can be described by solutions of a nonlinear integral equation. For arbitrary \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$k\geqslant 2$\end{document} we find a sufficient condition under which the integral equation has unique solution, hence under the condition the corresponding model has unique splitting Gibbs measure. More... »

PAGES

1-17

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11040-012-9118-6

DOI

http://dx.doi.org/10.1007/s11040-012-9118-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1034464484


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "National University of Uzbekistan, Tashkent, Uzbekistan", 
          "id": "http://www.grid.ac/institutes/grid.23471.33", 
          "name": [
            "National University of Uzbekistan, Tashkent, Uzbekistan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eshkabilov", 
        "givenName": "Yu. Kh.", 
        "id": "sg:person.015547714741.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015547714741.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National University of Uzbekistan, Tashkent, Uzbekistan", 
          "id": "http://www.grid.ac/institutes/grid.23471.33", 
          "name": [
            "National University of Uzbekistan, Tashkent, Uzbekistan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Haydarov", 
        "givenName": "F. H.", 
        "id": "sg:person.015457756641.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015457756641.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Mathematics, Tashkent, Uzbekistan", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Institute of Mathematics, Tashkent, Uzbekistan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rozikov", 
        "givenName": "U. A.", 
        "id": "sg:person.014213263324.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014213263324.92"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10955-012-0494-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033373089", 
          "https://doi.org/10.1007/s10955-012-0494-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02179399", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029115716", 
          "https://doi.org/10.1007/bf02179399"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11040-009-9056-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032320792", 
          "https://doi.org/10.1007/s11040-009-9056-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02634109", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000760297", 
          "https://doi.org/10.1007/bf02634109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01208713", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022605478", 
          "https://doi.org/10.1007/bf01208713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02634202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042152983", 
          "https://doi.org/10.1007/bf02634202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11040-010-9079-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032764230", 
          "https://doi.org/10.1007/s11040-010-9079-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11005-005-0032-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038943181", 
          "https://doi.org/10.1007/s11005-005-0032-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10955-007-9423-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002358229", 
          "https://doi.org/10.1007/s10955-007-9423-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01609854", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025547696", 
          "https://doi.org/10.1007/bf01609854"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:ques.0000021149.43343.05", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014082630", 
          "https://doi.org/10.1023/b:ques.0000021149.43343.05"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-08-11", 
    "datePublishedReg": "2012-08-11", 
    "description": "We consider models with nearest-neighbor interactions and with the set [0, 1] of spin values, on a Cayley tree of order \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$k\\geqslant 1$\\end{document}. It is known that the \u2018splitting Gibbs measures\u2019 of the model can be described by solutions of a nonlinear integral equation. For arbitrary \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$k\\geqslant 2$\\end{document} we find a sufficient condition under which the integral equation has unique solution, hence under the condition the corresponding model has unique splitting Gibbs measure.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11040-012-9118-6", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1135920", 
        "issn": [
          "1385-0172", 
          "1572-9656"
        ], 
        "name": "Mathematical Physics, Analysis and Geometry", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "16"
      }
    ], 
    "keywords": [
      "Gibbs measures", 
      "splitting Gibbs measures", 
      "integral equations", 
      "Cayley tree", 
      "nonlinear integral equations", 
      "spin values", 
      "nearest-neighbor interactions", 
      "sufficient conditions", 
      "unique solution", 
      "uncountable set", 
      "equations", 
      "corresponding model", 
      "solution", 
      "model", 
      "uniqueness", 
      "set", 
      "conditions", 
      "values", 
      "order", 
      "trees", 
      "measures", 
      "interaction"
    ], 
    "name": "Uniqueness of Gibbs Measure for Models with Uncountable Set of Spin Values on a Cayley Tree", 
    "pagination": "1-17", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1034464484"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11040-012-9118-6"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11040-012-9118-6", 
      "https://app.dimensions.ai/details/publication/pub.1034464484"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_563.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11040-012-9118-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11040-012-9118-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11040-012-9118-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11040-012-9118-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11040-012-9118-6'


 

This table displays all metadata directly associated to this object as RDF triples.

141 TRIPLES      22 PREDICATES      58 URIs      39 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11040-012-9118-6 schema:about anzsrc-for:01
2 anzsrc-for:02
3 schema:author N88a00693ecf3424b8df5aa4da4c506cf
4 schema:citation sg:pub.10.1007/bf01208713
5 sg:pub.10.1007/bf01609854
6 sg:pub.10.1007/bf02179399
7 sg:pub.10.1007/bf02634109
8 sg:pub.10.1007/bf02634202
9 sg:pub.10.1007/s10955-007-9423-9
10 sg:pub.10.1007/s10955-012-0494-x
11 sg:pub.10.1007/s11005-005-0032-8
12 sg:pub.10.1007/s11040-009-9056-0
13 sg:pub.10.1007/s11040-010-9079-6
14 sg:pub.10.1023/b:ques.0000021149.43343.05
15 schema:datePublished 2012-08-11
16 schema:datePublishedReg 2012-08-11
17 schema:description We consider models with nearest-neighbor interactions and with the set [0, 1] of spin values, on a Cayley tree of order \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$k\geqslant 1$\end{document}. It is known that the ‘splitting Gibbs measures’ of the model can be described by solutions of a nonlinear integral equation. For arbitrary \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$k\geqslant 2$\end{document} we find a sufficient condition under which the integral equation has unique solution, hence under the condition the corresponding model has unique splitting Gibbs measure.
18 schema:genre article
19 schema:inLanguage en
20 schema:isAccessibleForFree true
21 schema:isPartOf N78709e4c0f6c4ab58587aa3ccac1df4e
22 Ndab97e430382485ca0fe7149218829ba
23 sg:journal.1135920
24 schema:keywords Cayley tree
25 Gibbs measures
26 conditions
27 corresponding model
28 equations
29 integral equations
30 interaction
31 measures
32 model
33 nearest-neighbor interactions
34 nonlinear integral equations
35 order
36 set
37 solution
38 spin values
39 splitting Gibbs measures
40 sufficient conditions
41 trees
42 uncountable set
43 unique solution
44 uniqueness
45 values
46 schema:name Uniqueness of Gibbs Measure for Models with Uncountable Set of Spin Values on a Cayley Tree
47 schema:pagination 1-17
48 schema:productId N408dd78d1ed3469fa8e2c3fd707bddb9
49 N7b47dbe05ff84654aeacce9f49226e62
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034464484
51 https://doi.org/10.1007/s11040-012-9118-6
52 schema:sdDatePublished 2022-05-20T07:27
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher Nfadd7cd4e78946a9b23ad43ae966a850
55 schema:url https://doi.org/10.1007/s11040-012-9118-6
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N408dd78d1ed3469fa8e2c3fd707bddb9 schema:name doi
60 schema:value 10.1007/s11040-012-9118-6
61 rdf:type schema:PropertyValue
62 N78709e4c0f6c4ab58587aa3ccac1df4e schema:volumeNumber 16
63 rdf:type schema:PublicationVolume
64 N7b47dbe05ff84654aeacce9f49226e62 schema:name dimensions_id
65 schema:value pub.1034464484
66 rdf:type schema:PropertyValue
67 N88a00693ecf3424b8df5aa4da4c506cf rdf:first sg:person.015547714741.65
68 rdf:rest Nff1d7d38e9d745ed84257a57a238ff64
69 Ndab97e430382485ca0fe7149218829ba schema:issueNumber 1
70 rdf:type schema:PublicationIssue
71 Ne4ab399a670b411a9b9523a26df0fc7c rdf:first sg:person.014213263324.92
72 rdf:rest rdf:nil
73 Nfadd7cd4e78946a9b23ad43ae966a850 schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 Nff1d7d38e9d745ed84257a57a238ff64 rdf:first sg:person.015457756641.48
76 rdf:rest Ne4ab399a670b411a9b9523a26df0fc7c
77 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
78 schema:name Mathematical Sciences
79 rdf:type schema:DefinedTerm
80 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
81 schema:name Physical Sciences
82 rdf:type schema:DefinedTerm
83 sg:journal.1135920 schema:issn 1385-0172
84 1572-9656
85 schema:name Mathematical Physics, Analysis and Geometry
86 schema:publisher Springer Nature
87 rdf:type schema:Periodical
88 sg:person.014213263324.92 schema:affiliation grid-institutes:None
89 schema:familyName Rozikov
90 schema:givenName U. A.
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014213263324.92
92 rdf:type schema:Person
93 sg:person.015457756641.48 schema:affiliation grid-institutes:grid.23471.33
94 schema:familyName Haydarov
95 schema:givenName F. H.
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015457756641.48
97 rdf:type schema:Person
98 sg:person.015547714741.65 schema:affiliation grid-institutes:grid.23471.33
99 schema:familyName Eshkabilov
100 schema:givenName Yu. Kh.
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015547714741.65
102 rdf:type schema:Person
103 sg:pub.10.1007/bf01208713 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022605478
104 https://doi.org/10.1007/bf01208713
105 rdf:type schema:CreativeWork
106 sg:pub.10.1007/bf01609854 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025547696
107 https://doi.org/10.1007/bf01609854
108 rdf:type schema:CreativeWork
109 sg:pub.10.1007/bf02179399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029115716
110 https://doi.org/10.1007/bf02179399
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/bf02634109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000760297
113 https://doi.org/10.1007/bf02634109
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/bf02634202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042152983
116 https://doi.org/10.1007/bf02634202
117 rdf:type schema:CreativeWork
118 sg:pub.10.1007/s10955-007-9423-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002358229
119 https://doi.org/10.1007/s10955-007-9423-9
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/s10955-012-0494-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1033373089
122 https://doi.org/10.1007/s10955-012-0494-x
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/s11005-005-0032-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038943181
125 https://doi.org/10.1007/s11005-005-0032-8
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/s11040-009-9056-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032320792
128 https://doi.org/10.1007/s11040-009-9056-0
129 rdf:type schema:CreativeWork
130 sg:pub.10.1007/s11040-010-9079-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032764230
131 https://doi.org/10.1007/s11040-010-9079-6
132 rdf:type schema:CreativeWork
133 sg:pub.10.1023/b:ques.0000021149.43343.05 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014082630
134 https://doi.org/10.1023/b:ques.0000021149.43343.05
135 rdf:type schema:CreativeWork
136 grid-institutes:None schema:alternateName Institute of Mathematics, Tashkent, Uzbekistan
137 schema:name Institute of Mathematics, Tashkent, Uzbekistan
138 rdf:type schema:Organization
139 grid-institutes:grid.23471.33 schema:alternateName National University of Uzbekistan, Tashkent, Uzbekistan
140 schema:name National University of Uzbekistan, Tashkent, Uzbekistan
141 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...