Statistical Thermodynamics of Surface-Bounded Exospheres View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-05-12

AUTHORS

Norbert Schörghofer

ABSTRACT

Neutral exospheres of large airless bodies consist of atoms or molecules on ballistic trajectories. An import example is the lunar water exosphere, thought to transport water to cold traps. In anticipation of future observational measurements, the theory of thermalized surface-bounded gravitationally-bound exospheres is further developed. The vertical density profile is calculated using thermodynamic averages of an ensemble of ballistic trajectories. When the launch velocities follow the Maxwell–Boltzmann Flux distribution, the classical density profile results. For many other probability distributions, including thermal desorption from a vertical wall, the density diverges logarithmically near the surface. Hence, an exosphere resulting from thermal desorption from a rough surface includes a ground-hugging population that appears to be colder than the surface. Another insight derived from the thermodynamic perspective is that cold traps can be interpreted in terms of the frostpoint of the water exosphere, if the long-term average of the pressure of the exosphere is considered. Ice in lunar caves is long-lasting only if the cave interior is below the cold trap temperature threshold. More... »

PAGES

5

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11038-022-09547-5

DOI

http://dx.doi.org/10.1007/s11038-022-09547-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1147829067


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Planetary Science Institute, Honolulu, HI, USA", 
          "id": "http://www.grid.ac/institutes/grid.423138.f", 
          "name": [
            "Planetary Science Institute, Tucson, AZ, USA", 
            "Planetary Science Institute, Honolulu, HI, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sch\u00f6rghofer", 
        "givenName": "Norbert", 
        "id": "sg:person.016653174611.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016653174611.87"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11038-021-09542-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1140710589", 
          "https://doi.org/10.1007/s11038-021-09542-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41561-019-0345-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1113473316", 
          "https://doi.org/10.1038/s41561-019-0345-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11214-021-00846-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1140808683", 
          "https://doi.org/10.1007/s11214-021-00846-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/s41550-020-1198-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1132036863", 
          "https://doi.org/10.1038/s41550-020-1198-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-05-12", 
    "datePublishedReg": "2022-05-12", 
    "description": "Neutral exospheres of large airless bodies consist of atoms or molecules on ballistic trajectories. An import example is the lunar water exosphere, thought to transport water to cold traps. In anticipation of future observational measurements, the theory of thermalized surface-bounded gravitationally-bound exospheres is further developed. The vertical density profile is calculated using thermodynamic averages of an ensemble of ballistic trajectories. When the launch velocities follow the Maxwell\u2013Boltzmann Flux distribution, the classical density profile results. For many other probability distributions, including thermal desorption from a vertical wall, the density diverges logarithmically near the surface.  Hence, an exosphere resulting from thermal desorption from a rough surface includes a ground-hugging population that appears to be colder than the surface. Another insight derived from the thermodynamic perspective is that cold traps can be interpreted in terms of the frostpoint of the water exosphere, if the long-term average of the pressure of the exosphere is considered. Ice in lunar caves is long-lasting only if the cave interior is below the cold trap temperature threshold.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11038-022-09547-5", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1026186", 
        "issn": [
          "0167-9295", 
          "1573-0794"
        ], 
        "name": "Earth, Moon, and Planets", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "126"
      }
    ], 
    "keywords": [
      "statistical thermodynamics", 
      "thermodynamic averages", 
      "probability distribution", 
      "ballistic trajectories", 
      "density diverges", 
      "neutral exosphere", 
      "observational measurements", 
      "cold trap", 
      "vertical density profile", 
      "flux distribution", 
      "vertical wall", 
      "density profiles", 
      "density profile results", 
      "thermal desorption", 
      "launch velocity", 
      "rough surface", 
      "airless bodies", 
      "exosphere", 
      "lunar water", 
      "trajectories", 
      "thermodynamic perspective", 
      "surface", 
      "profile results", 
      "theory", 
      "water", 
      "thermodynamics", 
      "ensemble", 
      "distribution", 
      "diverges", 
      "velocity", 
      "desorption", 
      "atoms", 
      "long-term average", 
      "temperature threshold", 
      "traps", 
      "terms", 
      "wall", 
      "interior", 
      "measurements", 
      "pressure", 
      "average", 
      "results", 
      "threshold", 
      "example", 
      "profile", 
      "cave interior", 
      "body", 
      "insights", 
      "perspective", 
      "molecules", 
      "caves", 
      "anticipation", 
      "population"
    ], 
    "name": "Statistical Thermodynamics of Surface-Bounded Exospheres", 
    "pagination": "5", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1147829067"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11038-022-09547-5"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11038-022-09547-5", 
      "https://app.dimensions.ai/details/publication/pub.1147829067"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_929.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11038-022-09547-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11038-022-09547-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11038-022-09547-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11038-022-09547-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11038-022-09547-5'


 

This table displays all metadata directly associated to this object as RDF triples.

127 TRIPLES      21 PREDICATES      81 URIs      69 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11038-022-09547-5 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N8050f4a478cd4f5c9d48021439a54309
4 schema:citation sg:pub.10.1007/s11038-021-09542-2
5 sg:pub.10.1007/s11214-021-00846-3
6 sg:pub.10.1038/s41550-020-1198-9
7 sg:pub.10.1038/s41561-019-0345-3
8 schema:datePublished 2022-05-12
9 schema:datePublishedReg 2022-05-12
10 schema:description Neutral exospheres of large airless bodies consist of atoms or molecules on ballistic trajectories. An import example is the lunar water exosphere, thought to transport water to cold traps. In anticipation of future observational measurements, the theory of thermalized surface-bounded gravitationally-bound exospheres is further developed. The vertical density profile is calculated using thermodynamic averages of an ensemble of ballistic trajectories. When the launch velocities follow the Maxwell–Boltzmann Flux distribution, the classical density profile results. For many other probability distributions, including thermal desorption from a vertical wall, the density diverges logarithmically near the surface. Hence, an exosphere resulting from thermal desorption from a rough surface includes a ground-hugging population that appears to be colder than the surface. Another insight derived from the thermodynamic perspective is that cold traps can be interpreted in terms of the frostpoint of the water exosphere, if the long-term average of the pressure of the exosphere is considered. Ice in lunar caves is long-lasting only if the cave interior is below the cold trap temperature threshold.
11 schema:genre article
12 schema:isAccessibleForFree false
13 schema:isPartOf N9811ceca481244b7809acec23dae2dca
14 Nb4fdd441ba464242bcdc58a5aabcc1f6
15 sg:journal.1026186
16 schema:keywords airless bodies
17 anticipation
18 atoms
19 average
20 ballistic trajectories
21 body
22 cave interior
23 caves
24 cold trap
25 density diverges
26 density profile results
27 density profiles
28 desorption
29 distribution
30 diverges
31 ensemble
32 example
33 exosphere
34 flux distribution
35 insights
36 interior
37 launch velocity
38 long-term average
39 lunar water
40 measurements
41 molecules
42 neutral exosphere
43 observational measurements
44 perspective
45 population
46 pressure
47 probability distribution
48 profile
49 profile results
50 results
51 rough surface
52 statistical thermodynamics
53 surface
54 temperature threshold
55 terms
56 theory
57 thermal desorption
58 thermodynamic averages
59 thermodynamic perspective
60 thermodynamics
61 threshold
62 trajectories
63 traps
64 velocity
65 vertical density profile
66 vertical wall
67 wall
68 water
69 schema:name Statistical Thermodynamics of Surface-Bounded Exospheres
70 schema:pagination 5
71 schema:productId N296f4f12cd72407f9e352651e4ca758c
72 N94eaa107b7354bac91469aa93fe94554
73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1147829067
74 https://doi.org/10.1007/s11038-022-09547-5
75 schema:sdDatePublished 2022-12-01T06:44
76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
77 schema:sdPublisher N8cbc3d3485774292b4f39cec1ecd6f1d
78 schema:url https://doi.org/10.1007/s11038-022-09547-5
79 sgo:license sg:explorer/license/
80 sgo:sdDataset articles
81 rdf:type schema:ScholarlyArticle
82 N296f4f12cd72407f9e352651e4ca758c schema:name doi
83 schema:value 10.1007/s11038-022-09547-5
84 rdf:type schema:PropertyValue
85 N8050f4a478cd4f5c9d48021439a54309 rdf:first sg:person.016653174611.87
86 rdf:rest rdf:nil
87 N8cbc3d3485774292b4f39cec1ecd6f1d schema:name Springer Nature - SN SciGraph project
88 rdf:type schema:Organization
89 N94eaa107b7354bac91469aa93fe94554 schema:name dimensions_id
90 schema:value pub.1147829067
91 rdf:type schema:PropertyValue
92 N9811ceca481244b7809acec23dae2dca schema:issueNumber 2
93 rdf:type schema:PublicationIssue
94 Nb4fdd441ba464242bcdc58a5aabcc1f6 schema:volumeNumber 126
95 rdf:type schema:PublicationVolume
96 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
97 schema:name Physical Sciences
98 rdf:type schema:DefinedTerm
99 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
100 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
101 rdf:type schema:DefinedTerm
102 sg:journal.1026186 schema:issn 0167-9295
103 1573-0794
104 schema:name Earth, Moon, and Planets
105 schema:publisher Springer Nature
106 rdf:type schema:Periodical
107 sg:person.016653174611.87 schema:affiliation grid-institutes:grid.423138.f
108 schema:familyName Schörghofer
109 schema:givenName Norbert
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016653174611.87
111 rdf:type schema:Person
112 sg:pub.10.1007/s11038-021-09542-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1140710589
113 https://doi.org/10.1007/s11038-021-09542-2
114 rdf:type schema:CreativeWork
115 sg:pub.10.1007/s11214-021-00846-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1140808683
116 https://doi.org/10.1007/s11214-021-00846-3
117 rdf:type schema:CreativeWork
118 sg:pub.10.1038/s41550-020-1198-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1132036863
119 https://doi.org/10.1038/s41550-020-1198-9
120 rdf:type schema:CreativeWork
121 sg:pub.10.1038/s41561-019-0345-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113473316
122 https://doi.org/10.1038/s41561-019-0345-3
123 rdf:type schema:CreativeWork
124 grid-institutes:grid.423138.f schema:alternateName Planetary Science Institute, Honolulu, HI, USA
125 schema:name Planetary Science Institute, Honolulu, HI, USA
126 Planetary Science Institute, Tucson, AZ, USA
127 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...