Instability of Triangular Equilibrium Points in the Restricted Three-Body Problem Under Effects of Circumbinary Disc, Radiation Pressure and P–R Drag View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-10-21

AUTHORS

Tajudeen Oluwafemi Amuda, Jagadish Singh

ABSTRACT

The paper examines instability of triangular equilibrium points of a test particle in the gravitational field of two primaries radiating with effective Poynting–Robertson (P–R) drag, enclosed by circumbinary disc. The equations of motion are derived and positions of triangular equilibrium points are located. It is seen that the locations are affected by the disc, radiation pressure and P–R drag of the primaries. In particular, for our numerical computations of the locations of the triangular equilibrium points and the linear stability analysis, we consider a low-mass pulsating star, IRAS 11472-0800 as the bigger primary, with a young white dwarf star; G29-38 as the smaller primary. We observe that the disc does not change the x-coordinates of the triangular points while their y-coordinates are been altered. However, radiation pressure, P–R drag and the mass parameter µ mainly contribute in shifting the location of the triangular points. As regards the stability analysis, these points are in general unstable under the combine effects of radiation, P–R drag and disc, in the entire range of the mass parameter due to complex roots with positive real parts. Further, in order to discern the effects of the parameters on the instability outcome, we broaden the range of the mass parameter to accommodate small values of the mass parameters. We observe that in the absence of radiation and the presence of disc, when the mass parameter is less than the critical mass, all the roots are pure imaginary and the triangular point is stable. However, when μ=0.038521\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu = 0.038521$$\end{document}, the four roots are complex, but turn pure imaginary quantities when the disc is present. This proves that the disc is a stabilizing force while the radiation pressure and P–R drag induces instability around the triangular equilibrium points in the entire range of the mass parameter due to the presence of complex roots with positive real parts. More... »

PAGES

1

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11038-021-09543-1

DOI

http://dx.doi.org/10.1007/s11038-021-09543-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1142048016


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Faculty of Sciences, Air Force Institute of Technology, Kaduna, Kaduna State, Nigeria", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Department of Mathematics, Faculty of Sciences, Air Force Institute of Technology, Kaduna, Kaduna State, Nigeria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Amuda", 
        "givenName": "Tajudeen Oluwafemi", 
        "id": "sg:person.016564746201.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016564746201.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Faculty of Physical Sciences, Ahmadu Bello University, Zaria, Nigeria", 
          "id": "http://www.grid.ac/institutes/grid.411225.1", 
          "name": [
            "Department of Mathematics, Faculty of Physical Sciences, Ahmadu Bello University, Zaria, Nigeria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Singh", 
        "givenName": "Jagadish", 
        "id": "sg:person.016354071107.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016354071107.51"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10509-006-9065-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033441106", 
          "https://doi.org/10.1007/s10509-006-9065-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01227667", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027621601", 
          "https://doi.org/10.1007/bf01227667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10509-013-1662-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008937874", 
          "https://doi.org/10.1007/s10509-013-1662-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/330138a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011306090", 
          "https://doi.org/10.1038/330138a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10509-009-0253-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007486540", 
          "https://doi.org/10.1007/s10509-009-0253-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10509-008-9898-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032826853", 
          "https://doi.org/10.1007/s10509-008-9898-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10509-013-1707-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023748492", 
          "https://doi.org/10.1007/s10509-013-1707-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10509-006-9170-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026996991", 
          "https://doi.org/10.1007/s10509-006-9170-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12036-009-0009-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042940516", 
          "https://doi.org/10.1007/s12036-009-0009-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10509-013-1733-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017602767", 
          "https://doi.org/10.1007/s10509-013-1733-6"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-10-21", 
    "datePublishedReg": "2021-10-21", 
    "description": "The paper examines instability of triangular equilibrium points of a test particle in the gravitational field of two primaries radiating with effective Poynting\u2013Robertson (P\u2013R) drag, enclosed by circumbinary disc. The equations of motion are derived and positions of triangular equilibrium points are located. It is seen that the locations are affected by the disc, radiation pressure and P\u2013R drag of the primaries. In particular, for our numerical computations of the locations of the triangular equilibrium points and the linear stability analysis, we consider a low-mass pulsating star, IRAS 11472-0800 as the bigger primary, with a young white dwarf star; G29-38 as the smaller primary. We observe that the disc does not change the x-coordinates of the triangular points while their y-coordinates are been altered. However, radiation pressure, P\u2013R drag and the mass parameter \u00b5 mainly contribute in shifting the location of the triangular points. As regards the stability analysis, these points are in general unstable under the combine effects of radiation, P\u2013R drag and disc, in the entire range of the mass parameter due to complex roots with positive real parts. Further, in order to discern the effects of the parameters on the instability outcome, we broaden the range of the mass parameter to accommodate small values of the mass parameters. We observe that in the absence of radiation and the presence of disc, when the mass parameter is less than the critical mass, all the roots are pure imaginary and the triangular point is stable. However, when \u03bc=0.038521\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mu = 0.038521$$\\end{document}, the four roots are complex, but turn pure imaginary quantities when the disc is present. This proves that the disc is a stabilizing force while the radiation pressure and P\u2013R drag induces instability around the triangular equilibrium points in the entire range of the mass parameter due to the presence of complex roots with positive real parts.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11038-021-09543-1", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1026186", 
        "issn": [
          "0167-9295", 
          "1573-0794"
        ], 
        "name": "Earth, Moon, and Planets", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "126"
      }
    ], 
    "keywords": [
      "triangular equilibrium points", 
      "equilibrium point", 
      "R drag", 
      "positive real part", 
      "radiation pressure", 
      "complex roots", 
      "stability analysis", 
      "mass parameters", 
      "equations of motion", 
      "white dwarf stars", 
      "triangular points", 
      "linear stability analysis", 
      "real part", 
      "three-body problem", 
      "presence of disks", 
      "Poynting-Robertson drag", 
      "numerical computations", 
      "dwarf stars", 
      "G29-38", 
      "gravitational field", 
      "pulsating stars", 
      "imaginary quantities", 
      "test particles", 
      "circumbinary disk", 
      "bigger primary", 
      "small values", 
      "x-coordinates", 
      "entire range", 
      "stars", 
      "drag", 
      "parameters", 
      "equations", 
      "y coordinates", 
      "instability", 
      "computation", 
      "point", 
      "disk", 
      "motion", 
      "smaller primary", 
      "absence of radiation", 
      "combine effect", 
      "problem", 
      "radiation", 
      "field", 
      "range", 
      "quantity", 
      "force", 
      "order", 
      "particles", 
      "analysis", 
      "location", 
      "critical mass", 
      "roots", 
      "position", 
      "values", 
      "effect", 
      "part", 
      "mass", 
      "presence", 
      "pressure", 
      "primary", 
      "absence", 
      "outcomes", 
      "paper"
    ], 
    "name": "Instability of Triangular Equilibrium Points in the Restricted Three-Body Problem Under Effects of Circumbinary Disc, Radiation Pressure and P\u2013R Drag", 
    "pagination": "1", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1142048016"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11038-021-09543-1"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11038-021-09543-1", 
      "https://app.dimensions.ai/details/publication/pub.1142048016"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:43", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_916.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11038-021-09543-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11038-021-09543-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11038-021-09543-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11038-021-09543-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11038-021-09543-1'


 

This table displays all metadata directly associated to this object as RDF triples.

171 TRIPLES      21 PREDICATES      98 URIs      80 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11038-021-09543-1 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author Nce90ad02981f43b7bee89878fc415923
4 schema:citation sg:pub.10.1007/bf01227667
5 sg:pub.10.1007/s10509-006-9065-4
6 sg:pub.10.1007/s10509-006-9170-4
7 sg:pub.10.1007/s10509-008-9898-0
8 sg:pub.10.1007/s10509-009-0253-x
9 sg:pub.10.1007/s10509-013-1662-4
10 sg:pub.10.1007/s10509-013-1707-8
11 sg:pub.10.1007/s10509-013-1733-6
12 sg:pub.10.1007/s12036-009-0009-6
13 sg:pub.10.1038/330138a0
14 schema:datePublished 2021-10-21
15 schema:datePublishedReg 2021-10-21
16 schema:description The paper examines instability of triangular equilibrium points of a test particle in the gravitational field of two primaries radiating with effective Poynting–Robertson (P–R) drag, enclosed by circumbinary disc. The equations of motion are derived and positions of triangular equilibrium points are located. It is seen that the locations are affected by the disc, radiation pressure and P–R drag of the primaries. In particular, for our numerical computations of the locations of the triangular equilibrium points and the linear stability analysis, we consider a low-mass pulsating star, IRAS 11472-0800 as the bigger primary, with a young white dwarf star; G29-38 as the smaller primary. We observe that the disc does not change the x-coordinates of the triangular points while their y-coordinates are been altered. However, radiation pressure, P–R drag and the mass parameter µ mainly contribute in shifting the location of the triangular points. As regards the stability analysis, these points are in general unstable under the combine effects of radiation, P–R drag and disc, in the entire range of the mass parameter due to complex roots with positive real parts. Further, in order to discern the effects of the parameters on the instability outcome, we broaden the range of the mass parameter to accommodate small values of the mass parameters. We observe that in the absence of radiation and the presence of disc, when the mass parameter is less than the critical mass, all the roots are pure imaginary and the triangular point is stable. However, when μ=0.038521\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu = 0.038521$$\end{document}, the four roots are complex, but turn pure imaginary quantities when the disc is present. This proves that the disc is a stabilizing force while the radiation pressure and P–R drag induces instability around the triangular equilibrium points in the entire range of the mass parameter due to the presence of complex roots with positive real parts.
17 schema:genre article
18 schema:isAccessibleForFree false
19 schema:isPartOf N373bc73ea8334ab9aff99dcbaf4808d0
20 Nea47ab33ea6b48aeb1f8cd4a05450f29
21 sg:journal.1026186
22 schema:keywords G29-38
23 Poynting-Robertson drag
24 R drag
25 absence
26 absence of radiation
27 analysis
28 bigger primary
29 circumbinary disk
30 combine effect
31 complex roots
32 computation
33 critical mass
34 disk
35 drag
36 dwarf stars
37 effect
38 entire range
39 equations
40 equations of motion
41 equilibrium point
42 field
43 force
44 gravitational field
45 imaginary quantities
46 instability
47 linear stability analysis
48 location
49 mass
50 mass parameters
51 motion
52 numerical computations
53 order
54 outcomes
55 paper
56 parameters
57 part
58 particles
59 point
60 position
61 positive real part
62 presence
63 presence of disks
64 pressure
65 primary
66 problem
67 pulsating stars
68 quantity
69 radiation
70 radiation pressure
71 range
72 real part
73 roots
74 small values
75 smaller primary
76 stability analysis
77 stars
78 test particles
79 three-body problem
80 triangular equilibrium points
81 triangular points
82 values
83 white dwarf stars
84 x-coordinates
85 y coordinates
86 schema:name Instability of Triangular Equilibrium Points in the Restricted Three-Body Problem Under Effects of Circumbinary Disc, Radiation Pressure and P–R Drag
87 schema:pagination 1
88 schema:productId N412568fe150846179bb3bdbda0e04bb4
89 Nfff4e58b37154f8f9c9dc25745462487
90 schema:sameAs https://app.dimensions.ai/details/publication/pub.1142048016
91 https://doi.org/10.1007/s11038-021-09543-1
92 schema:sdDatePublished 2022-12-01T06:43
93 schema:sdLicense https://scigraph.springernature.com/explorer/license/
94 schema:sdPublisher N09a23b4145e64d3098365d392a014a18
95 schema:url https://doi.org/10.1007/s11038-021-09543-1
96 sgo:license sg:explorer/license/
97 sgo:sdDataset articles
98 rdf:type schema:ScholarlyArticle
99 N09a23b4145e64d3098365d392a014a18 schema:name Springer Nature - SN SciGraph project
100 rdf:type schema:Organization
101 N373bc73ea8334ab9aff99dcbaf4808d0 schema:volumeNumber 126
102 rdf:type schema:PublicationVolume
103 N412568fe150846179bb3bdbda0e04bb4 schema:name doi
104 schema:value 10.1007/s11038-021-09543-1
105 rdf:type schema:PropertyValue
106 N4da8a163cf214cfd9eccb564d6a0f09d rdf:first sg:person.016354071107.51
107 rdf:rest rdf:nil
108 Nce90ad02981f43b7bee89878fc415923 rdf:first sg:person.016564746201.63
109 rdf:rest N4da8a163cf214cfd9eccb564d6a0f09d
110 Nea47ab33ea6b48aeb1f8cd4a05450f29 schema:issueNumber 1
111 rdf:type schema:PublicationIssue
112 Nfff4e58b37154f8f9c9dc25745462487 schema:name dimensions_id
113 schema:value pub.1142048016
114 rdf:type schema:PropertyValue
115 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
116 schema:name Physical Sciences
117 rdf:type schema:DefinedTerm
118 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
119 schema:name Other Physical Sciences
120 rdf:type schema:DefinedTerm
121 sg:journal.1026186 schema:issn 0167-9295
122 1573-0794
123 schema:name Earth, Moon, and Planets
124 schema:publisher Springer Nature
125 rdf:type schema:Periodical
126 sg:person.016354071107.51 schema:affiliation grid-institutes:grid.411225.1
127 schema:familyName Singh
128 schema:givenName Jagadish
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016354071107.51
130 rdf:type schema:Person
131 sg:person.016564746201.63 schema:affiliation grid-institutes:None
132 schema:familyName Amuda
133 schema:givenName Tajudeen Oluwafemi
134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016564746201.63
135 rdf:type schema:Person
136 sg:pub.10.1007/bf01227667 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027621601
137 https://doi.org/10.1007/bf01227667
138 rdf:type schema:CreativeWork
139 sg:pub.10.1007/s10509-006-9065-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033441106
140 https://doi.org/10.1007/s10509-006-9065-4
141 rdf:type schema:CreativeWork
142 sg:pub.10.1007/s10509-006-9170-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026996991
143 https://doi.org/10.1007/s10509-006-9170-4
144 rdf:type schema:CreativeWork
145 sg:pub.10.1007/s10509-008-9898-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032826853
146 https://doi.org/10.1007/s10509-008-9898-0
147 rdf:type schema:CreativeWork
148 sg:pub.10.1007/s10509-009-0253-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1007486540
149 https://doi.org/10.1007/s10509-009-0253-x
150 rdf:type schema:CreativeWork
151 sg:pub.10.1007/s10509-013-1662-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008937874
152 https://doi.org/10.1007/s10509-013-1662-4
153 rdf:type schema:CreativeWork
154 sg:pub.10.1007/s10509-013-1707-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023748492
155 https://doi.org/10.1007/s10509-013-1707-8
156 rdf:type schema:CreativeWork
157 sg:pub.10.1007/s10509-013-1733-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017602767
158 https://doi.org/10.1007/s10509-013-1733-6
159 rdf:type schema:CreativeWork
160 sg:pub.10.1007/s12036-009-0009-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042940516
161 https://doi.org/10.1007/s12036-009-0009-6
162 rdf:type schema:CreativeWork
163 sg:pub.10.1038/330138a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011306090
164 https://doi.org/10.1038/330138a0
165 rdf:type schema:CreativeWork
166 grid-institutes:None schema:alternateName Department of Mathematics, Faculty of Sciences, Air Force Institute of Technology, Kaduna, Kaduna State, Nigeria
167 schema:name Department of Mathematics, Faculty of Sciences, Air Force Institute of Technology, Kaduna, Kaduna State, Nigeria
168 rdf:type schema:Organization
169 grid-institutes:grid.411225.1 schema:alternateName Department of Mathematics, Faculty of Physical Sciences, Ahmadu Bello University, Zaria, Nigeria
170 schema:name Department of Mathematics, Faculty of Physical Sciences, Ahmadu Bello University, Zaria, Nigeria
171 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...