Migration of Water Molecules in the Permanently Shaded Areas of Polar Areas of Mercury View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2021-08-28

AUTHORS

E. A. Feoktistova, A. Y. Zharkova, A. A. Kokhanov, Zh F. Rodionova

ABSTRACT

Radar observations of the surface of Mercury had revealed areas with bright reflective properties in both polar regions of the planet. It was suggested that such areas contain depositions of volatile compounds, including water. In this paper, we investigated migration of water molecules to the permanently shaded areas, located in the impact crater in the polar regions of Mercury. To simulate the migration of water molecules in the exosphere of Mercury, we used the Monte Carlo method. To estimate the proportion of water molecules falling into cold traps in the polar regions of Mercury, we estimated the area of such regions. We found that the area of permanently shaded areas near the north pole of the planet reaches 23,300 km2, and in the area of the south pole—45,500 km2. Most of the water molecules (~ 92%) will be destroyed as a result of photolysis, and ~ 7.5% of them will be destroyed while they are on the planet's surface between hops. The fraction of water molecules that left the planet's exosphere as a result of reaching the escape velocity is only 0.3%. The fraction of water molecules trapped in permanently shaded areas in the polar regions of Mercury reaches 7.8% of the total number of particles participating in the simulation. Only 2.2% of them can be trapped in cold traps in the North Pole region and 5.6% in the South Pole region. More... »

PAGES

5

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11038-021-09542-2

DOI

http://dx.doi.org/10.1007/s11038-021-09542-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1140710589


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Earth Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0201", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Astronomical and Space Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0403", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Geology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Sternberg State Astronomical Institute, M.V. Lomonosov Moscow State University, Universitetsky prospekt 13, 119234, Moscow, Russian Federation", 
          "id": "http://www.grid.ac/institutes/grid.14476.30", 
          "name": [
            "Sternberg State Astronomical Institute, M.V. Lomonosov Moscow State University, Universitetsky prospekt 13, 119234, Moscow, Russian Federation"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Feoktistova", 
        "givenName": "E. A.", 
        "id": "sg:person.01037340131.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01037340131.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow State University of Geodesy and Cartography (MIIGAiK), Gorokhovsky pereulok 4, 105064, Moscow, Russian Federation", 
          "id": "http://www.grid.ac/institutes/grid.440676.7", 
          "name": [
            "Sternberg State Astronomical Institute, M.V. Lomonosov Moscow State University, Universitetsky prospekt 13, 119234, Moscow, Russian Federation", 
            "Moscow State University of Geodesy and Cartography (MIIGAiK), Gorokhovsky pereulok 4, 105064, Moscow, Russian Federation"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zharkova", 
        "givenName": "A. Y.", 
        "id": "sg:person.012745634437.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012745634437.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow State University of Geodesy and Cartography (MIIGAiK), Gorokhovsky pereulok 4, 105064, Moscow, Russian Federation", 
          "id": "http://www.grid.ac/institutes/grid.440676.7", 
          "name": [
            "Moscow State University of Geodesy and Cartography (MIIGAiK), Gorokhovsky pereulok 4, 105064, Moscow, Russian Federation"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kokhanov", 
        "givenName": "A. A.", 
        "id": "sg:person.013306705707.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013306705707.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Sternberg State Astronomical Institute, M.V. Lomonosov Moscow State University, Universitetsky prospekt 13, 119234, Moscow, Russian Federation", 
          "id": "http://www.grid.ac/institutes/grid.14476.30", 
          "name": [
            "Sternberg State Astronomical Institute, M.V. Lomonosov Moscow State University, Universitetsky prospekt 13, 119234, Moscow, Russian Federation"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rodionova", 
        "givenName": "Zh F.", 
        "id": "sg:person.016274633222.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016274633222.37"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00644558", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031151542", 
          "https://doi.org/10.1007/bf00644558"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2021-08-28", 
    "datePublishedReg": "2021-08-28", 
    "description": "Radar observations of the surface of Mercury had revealed areas with bright reflective properties in both polar regions of the planet. It was suggested that such areas contain depositions of volatile compounds, including water. In this paper, we investigated migration of water molecules to the permanently shaded areas, located in the impact crater in the polar regions of Mercury. To simulate the migration of water molecules in the exosphere of Mercury, we used the Monte Carlo method. To estimate the proportion of water molecules falling into cold traps in the polar regions of Mercury, we estimated the area of such regions. We found that the area of permanently shaded areas near the north pole of the planet reaches 23,300 km2, and in the area of the south pole\u201445,500 km2. Most of the water molecules (~\u200992%) will be destroyed as a result of photolysis, and\u2009~\u20097.5% of them will be destroyed while they are on the planet's surface between hops. The fraction of water molecules that left the planet's exosphere as a result of reaching the escape velocity is only 0.3%. The fraction of water molecules trapped in permanently shaded areas in the polar regions of Mercury reaches 7.8% of the total number of particles participating in the simulation. Only 2.2% of them can be trapped in cold traps in the North Pole region and 5.6% in the South Pole region.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11038-021-09542-2", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8719089", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1026186", 
        "issn": [
          "0167-9295", 
          "1573-0794"
        ], 
        "name": "Earth, Moon, and Planets", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "125"
      }
    ], 
    "keywords": [
      "polar regions", 
      "North Pole region", 
      "cold trap", 
      "South Pole region", 
      "surface of Mercury", 
      "pole region", 
      "exosphere of Mercury", 
      "impact craters", 
      "North Pole", 
      "planet's surface", 
      "radar observations", 
      "South Pole", 
      "polar areas", 
      "planet's exosphere", 
      "exosphere", 
      "km2", 
      "such regions", 
      "mercury", 
      "planets", 
      "escape velocity", 
      "result of photolysis", 
      "such areas", 
      "region", 
      "area", 
      "craters", 
      "poles", 
      "traps", 
      "surface", 
      "migration", 
      "water", 
      "water molecules", 
      "deposition", 
      "reflective properties", 
      "Shaded Area", 
      "fraction", 
      "Monte Carlo method", 
      "velocity", 
      "Carlo method", 
      "simulations", 
      "particles", 
      "photolysis", 
      "results", 
      "molecules", 
      "volatile compounds", 
      "proportion", 
      "properties", 
      "compounds", 
      "method", 
      "total number", 
      "paper", 
      "number", 
      "hop", 
      "observations"
    ], 
    "name": "Migration of Water Molecules in the Permanently Shaded Areas of Polar Areas of Mercury", 
    "pagination": "5", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1140710589"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11038-021-09542-2"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11038-021-09542-2", 
      "https://app.dimensions.ai/details/publication/pub.1140710589"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_891.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11038-021-09542-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11038-021-09542-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11038-021-09542-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11038-021-09542-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11038-021-09542-2'


 

This table displays all metadata directly associated to this object as RDF triples.

149 TRIPLES      21 PREDICATES      80 URIs      69 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11038-021-09542-2 schema:about anzsrc-for:02
2 anzsrc-for:0201
3 anzsrc-for:04
4 anzsrc-for:0403
5 schema:author N392d84a93f5c4fbdb5bb5ebcf0c1c58b
6 schema:citation sg:pub.10.1007/bf00644558
7 schema:datePublished 2021-08-28
8 schema:datePublishedReg 2021-08-28
9 schema:description Radar observations of the surface of Mercury had revealed areas with bright reflective properties in both polar regions of the planet. It was suggested that such areas contain depositions of volatile compounds, including water. In this paper, we investigated migration of water molecules to the permanently shaded areas, located in the impact crater in the polar regions of Mercury. To simulate the migration of water molecules in the exosphere of Mercury, we used the Monte Carlo method. To estimate the proportion of water molecules falling into cold traps in the polar regions of Mercury, we estimated the area of such regions. We found that the area of permanently shaded areas near the north pole of the planet reaches 23,300 km2, and in the area of the south pole—45,500 km2. Most of the water molecules (~ 92%) will be destroyed as a result of photolysis, and ~ 7.5% of them will be destroyed while they are on the planet's surface between hops. The fraction of water molecules that left the planet's exosphere as a result of reaching the escape velocity is only 0.3%. The fraction of water molecules trapped in permanently shaded areas in the polar regions of Mercury reaches 7.8% of the total number of particles participating in the simulation. Only 2.2% of them can be trapped in cold traps in the North Pole region and 5.6% in the South Pole region.
10 schema:genre article
11 schema:isAccessibleForFree false
12 schema:isPartOf N42dae093a29b4e0a9cb52bf8ef1cbb5a
13 Ncda9cb486bc44f7ba063cd4d539d68a6
14 sg:journal.1026186
15 schema:keywords Carlo method
16 Monte Carlo method
17 North Pole
18 North Pole region
19 Shaded Area
20 South Pole
21 South Pole region
22 area
23 cold trap
24 compounds
25 craters
26 deposition
27 escape velocity
28 exosphere
29 exosphere of Mercury
30 fraction
31 hop
32 impact craters
33 km2
34 mercury
35 method
36 migration
37 molecules
38 number
39 observations
40 paper
41 particles
42 photolysis
43 planet's exosphere
44 planet's surface
45 planets
46 polar areas
47 polar regions
48 pole region
49 poles
50 properties
51 proportion
52 radar observations
53 reflective properties
54 region
55 result of photolysis
56 results
57 simulations
58 such areas
59 such regions
60 surface
61 surface of Mercury
62 total number
63 traps
64 velocity
65 volatile compounds
66 water
67 water molecules
68 schema:name Migration of Water Molecules in the Permanently Shaded Areas of Polar Areas of Mercury
69 schema:pagination 5
70 schema:productId N6b13307f13f749e0baa566dadba2240d
71 Ne2b5c7b8cc7e4b9bb6b43dc0371f3a5c
72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1140710589
73 https://doi.org/10.1007/s11038-021-09542-2
74 schema:sdDatePublished 2022-12-01T06:42
75 schema:sdLicense https://scigraph.springernature.com/explorer/license/
76 schema:sdPublisher Nd20f3bd154fc4ac4bc4896c1a7d5d7e4
77 schema:url https://doi.org/10.1007/s11038-021-09542-2
78 sgo:license sg:explorer/license/
79 sgo:sdDataset articles
80 rdf:type schema:ScholarlyArticle
81 N392d84a93f5c4fbdb5bb5ebcf0c1c58b rdf:first sg:person.01037340131.18
82 rdf:rest N704fe9c3550e437da6579427887cc1e3
83 N3e50bc8ff2a14737a377ac32ca8ce3ca rdf:first sg:person.016274633222.37
84 rdf:rest rdf:nil
85 N42dae093a29b4e0a9cb52bf8ef1cbb5a schema:issueNumber 2
86 rdf:type schema:PublicationIssue
87 N6b13307f13f749e0baa566dadba2240d schema:name doi
88 schema:value 10.1007/s11038-021-09542-2
89 rdf:type schema:PropertyValue
90 N704fe9c3550e437da6579427887cc1e3 rdf:first sg:person.012745634437.17
91 rdf:rest Naf44ade6986f461593690c57d3e28d11
92 Naf44ade6986f461593690c57d3e28d11 rdf:first sg:person.013306705707.90
93 rdf:rest N3e50bc8ff2a14737a377ac32ca8ce3ca
94 Ncda9cb486bc44f7ba063cd4d539d68a6 schema:volumeNumber 125
95 rdf:type schema:PublicationVolume
96 Nd20f3bd154fc4ac4bc4896c1a7d5d7e4 schema:name Springer Nature - SN SciGraph project
97 rdf:type schema:Organization
98 Ne2b5c7b8cc7e4b9bb6b43dc0371f3a5c schema:name dimensions_id
99 schema:value pub.1140710589
100 rdf:type schema:PropertyValue
101 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
102 schema:name Physical Sciences
103 rdf:type schema:DefinedTerm
104 anzsrc-for:0201 schema:inDefinedTermSet anzsrc-for:
105 schema:name Astronomical and Space Sciences
106 rdf:type schema:DefinedTerm
107 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
108 schema:name Earth Sciences
109 rdf:type schema:DefinedTerm
110 anzsrc-for:0403 schema:inDefinedTermSet anzsrc-for:
111 schema:name Geology
112 rdf:type schema:DefinedTerm
113 sg:grant.8719089 http://pending.schema.org/fundedItem sg:pub.10.1007/s11038-021-09542-2
114 rdf:type schema:MonetaryGrant
115 sg:journal.1026186 schema:issn 0167-9295
116 1573-0794
117 schema:name Earth, Moon, and Planets
118 schema:publisher Springer Nature
119 rdf:type schema:Periodical
120 sg:person.01037340131.18 schema:affiliation grid-institutes:grid.14476.30
121 schema:familyName Feoktistova
122 schema:givenName E. A.
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01037340131.18
124 rdf:type schema:Person
125 sg:person.012745634437.17 schema:affiliation grid-institutes:grid.440676.7
126 schema:familyName Zharkova
127 schema:givenName A. Y.
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012745634437.17
129 rdf:type schema:Person
130 sg:person.013306705707.90 schema:affiliation grid-institutes:grid.440676.7
131 schema:familyName Kokhanov
132 schema:givenName A. A.
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013306705707.90
134 rdf:type schema:Person
135 sg:person.016274633222.37 schema:affiliation grid-institutes:grid.14476.30
136 schema:familyName Rodionova
137 schema:givenName Zh F.
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016274633222.37
139 rdf:type schema:Person
140 sg:pub.10.1007/bf00644558 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031151542
141 https://doi.org/10.1007/bf00644558
142 rdf:type schema:CreativeWork
143 grid-institutes:grid.14476.30 schema:alternateName Sternberg State Astronomical Institute, M.V. Lomonosov Moscow State University, Universitetsky prospekt 13, 119234, Moscow, Russian Federation
144 schema:name Sternberg State Astronomical Institute, M.V. Lomonosov Moscow State University, Universitetsky prospekt 13, 119234, Moscow, Russian Federation
145 rdf:type schema:Organization
146 grid-institutes:grid.440676.7 schema:alternateName Moscow State University of Geodesy and Cartography (MIIGAiK), Gorokhovsky pereulok 4, 105064, Moscow, Russian Federation
147 schema:name Moscow State University of Geodesy and Cartography (MIIGAiK), Gorokhovsky pereulok 4, 105064, Moscow, Russian Federation
148 Sternberg State Astronomical Institute, M.V. Lomonosov Moscow State University, Universitetsky prospekt 13, 119234, Moscow, Russian Federation
149 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...