Automated Extraction of Crater Rims on 3D Meshes Combining Artificial Neural Network and Discrete Curvature Labeling View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2020-10-08

AUTHORS

Nicole Christoff, Laurent Jorda, Sophie Viseur, Sylvain Bouley, Agata Manolova, Jean-Luc Mari

ABSTRACT

One of the challenges of planetary science is the age determination of geological units on the surface of the different planetary bodies in the solar system. This serves to establish a chronology of the geological events occurring on these different bodies, hence to understand their formation and evolution processes. An approach for dating planetary surfaces relies on the analysis of the impact crater densities with size. Approaches have been proposed to automatically detect impact craters in order to facilitate the dating process. They rely on color values from images or elevation values from Digital Elevation Models (DEM). In this article, we propose a new approach for crater detection, more specifically using their rims. The craters can be characterized by a round shape that can be used as a feature. The developed method is based on an analysis of the DEM geometry, represented as a 3D mesh, followed by curvature analysis. The classification process is done with one layer perceptron. The validation of the method is performed on DEMs of Mars, acquired by a laser altimeter aboard NASA’s Mars Global Surveyor spacecraft and combined with a database of manually identified craters. The results show that the proposed approach significantly reduces the number of false negatives compared to others based on topographic information only. More... »

PAGES

51-72

References to SciGraph publications

  • 2015-10-29. Automatic Recognition of Impact Craters on the Martian Surface from DEM and Images in PLANETARY EXPLORATION AND SCIENCE: RECENT RESULTS AND ADVANCES
  • 2004. Automatic Recognition of Impact Craters on the Surface of Mars in IMAGE ANALYSIS AND RECOGNITION
  • 1972-07. Paleocratering of the Moon: Review of post-Apollo data in ASTROPHYSICS AND SPACE SCIENCE
  • 2017-06-08. “Shape-Curvature-Graph”: Towards a New Model of Representation for the Description of 3D Meshes in AUGMENTED REALITY, VIRTUAL REALITY, AND COMPUTER GRAPHICS
  • 1975-02. A study of lunar impact crater size-distributions in EARTH, MOON, AND PLANETS
  • 2013. An Introduction to Statistical Learning, with Applications in R in NONE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11038-020-09535-7

    DOI

    http://dx.doi.org/10.1007/s11038-020-09535-7

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1131496279


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/04", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Earth Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0201", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Astronomical and Space Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0403", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Geology", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Technical University of Sofia, Faculty of Telecommunications, blvd. Kl. Ohridski 8, 1796, Sofia, Bulgaria", 
              "id": "http://www.grid.ac/institutes/grid.6981.6", 
              "name": [
                "Technical University of Sofia, Faculty of Telecommunications, blvd. Kl. Ohridski 8, 1796, Sofia, Bulgaria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Christoff", 
            "givenName": "Nicole", 
            "id": "sg:person.013747641002.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013747641002.50"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Aix Marseille Universit\u00e9, CNRS, CNES, LAM, Marseille, France", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Aix Marseille Universit\u00e9, CNRS, CNES, LAM, Marseille, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jorda", 
            "givenName": "Laurent", 
            "id": "sg:person.01203771707.59", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203771707.59"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Aix Marseille Univ, CNRS, IRD, INRAE, CEREGE, Aix-en-Provence, France", 
              "id": "http://www.grid.ac/institutes/grid.498067.4", 
              "name": [
                "Aix Marseille Univ, CNRS, IRD, INRAE, CEREGE, Aix-en-Provence, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Viseur", 
            "givenName": "Sophie", 
            "id": "sg:person.014451474032.74", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014451474032.74"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut Universitaire de France, Paris, France", 
              "id": "http://www.grid.ac/institutes/grid.440891.0", 
              "name": [
                "GEOPS \u2013 G\u00e9osciences Paris Sud, Univ. Paris-Sud, CNRS, Universit\u00e9 Paris-Saclay, Orsay, France", 
                "IMCCE \u2013 Observatoire de Paris, CNRS-UMR 8028, Paris, France", 
                "Institut Universitaire de France, Paris, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bouley", 
            "givenName": "Sylvain", 
            "id": "sg:person.011261227562.03", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011261227562.03"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Technical University of Sofia, Faculty of Telecommunications, blvd. Kl. Ohridski 8, 1796, Sofia, Bulgaria", 
              "id": "http://www.grid.ac/institutes/grid.6981.6", 
              "name": [
                "Technical University of Sofia, Faculty of Telecommunications, blvd. Kl. Ohridski 8, 1796, Sofia, Bulgaria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Manolova", 
            "givenName": "Agata", 
            "id": "sg:person.013612773352.81", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013612773352.81"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Aix Marseille Universit\u00e9, Universit\u00e9 de Toulon, CNRS, LIS, Marseille, France", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Aix Marseille Universit\u00e9, Universit\u00e9 de Toulon, CNRS, LIS, Marseille, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mari", 
            "givenName": "Jean-Luc", 
            "id": "sg:person.010376126345.96", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010376126345.96"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-1-4614-7138-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044216575", 
              "https://doi.org/10.1007/978-1-4614-7138-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00642541", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025349979", 
              "https://doi.org/10.1007/bf00642541"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00577878", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019290431", 
              "https://doi.org/10.1007/bf00577878"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-30126-4_60", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043249531", 
              "https://doi.org/10.1007/978-3-540-30126-4_60"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-45052-9_6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045010905", 
              "https://doi.org/10.1007/978-3-662-45052-9_6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-319-60928-7_32", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085928886", 
              "https://doi.org/10.1007/978-3-319-60928-7_32"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2020-10-08", 
        "datePublishedReg": "2020-10-08", 
        "description": "One of the challenges of planetary science is the age determination of geological units on the surface of the different planetary bodies in the solar system. This serves to establish a chronology of the geological events occurring on these different bodies, hence to understand their formation and evolution processes. An approach for dating planetary surfaces relies on the analysis of the impact crater densities with size. Approaches have been proposed to automatically detect impact craters in order to facilitate the dating process. They rely on color values from images or elevation values from Digital Elevation Models (DEM). In this article, we propose a new approach for crater detection, more specifically using their rims. The craters can be characterized by a round shape that can be used as a feature. The developed method is based on an analysis of the DEM geometry, represented as a 3D mesh, followed by curvature analysis. The classification process is done with one layer perceptron. The validation of the method is performed on DEMs of Mars, acquired by a laser altimeter aboard NASA\u2019s Mars Global Surveyor spacecraft and combined with a database of manually identified craters. The results show that the proposed approach significantly reduces the number of false negatives compared to others based on topographic information only.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11038-020-09535-7", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1026186", 
            "issn": [
              "0167-9295", 
              "1573-0794"
            ], 
            "name": "Earth, Moon, and Planets", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3-4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "124"
          }
        ], 
        "keywords": [
          "artificial neural network", 
          "crater detection", 
          "neural network", 
          "classification process", 
          "Layer Perceptron", 
          "digital elevation model", 
          "NASA\u2019s Mars Global Surveyor spacecraft", 
          "Mars Global Surveyor spacecraft", 
          "new approach", 
          "false negatives", 
          "perceptron", 
          "evolution process", 
          "topographic information", 
          "impact craters", 
          "curvature analysis", 
          "network", 
          "elevation values", 
          "different planetary bodies", 
          "elevation model", 
          "images", 
          "database", 
          "color values", 
          "information", 
          "mesh", 
          "geological units", 
          "geological events", 
          "Surveyor spacecraft", 
          "crater rim", 
          "age determination", 
          "planetary bodies", 
          "laser altimeter", 
          "planetary surfaces", 
          "planetary science", 
          "extraction", 
          "method", 
          "craters", 
          "detection", 
          "challenges", 
          "dating process", 
          "solar system", 
          "process", 
          "system", 
          "features", 
          "validation", 
          "different bodies", 
          "rim", 
          "model", 
          "order", 
          "science", 
          "negatives", 
          "Mars", 
          "chronology", 
          "altimeter", 
          "number", 
          "analysis", 
          "results", 
          "units", 
          "article", 
          "spacecraft", 
          "surface", 
          "labeling", 
          "events", 
          "shape", 
          "values", 
          "size", 
          "body", 
          "formation", 
          "geometry", 
          "determination", 
          "approach", 
          "round shape"
        ], 
        "name": "Automated Extraction of Crater Rims on 3D Meshes Combining Artificial Neural Network and Discrete Curvature Labeling", 
        "pagination": "51-72", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1131496279"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11038-020-09535-7"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11038-020-09535-7", 
          "https://app.dimensions.ai/details/publication/pub.1131496279"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-11-24T21:06", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_859.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11038-020-09535-7"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11038-020-09535-7'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11038-020-09535-7'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11038-020-09535-7'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11038-020-09535-7'


     

    This table displays all metadata directly associated to this object as RDF triples.

    208 TRIPLES      21 PREDICATES      102 URIs      86 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11038-020-09535-7 schema:about anzsrc-for:02
    2 anzsrc-for:0201
    3 anzsrc-for:04
    4 anzsrc-for:0403
    5 schema:author N4cd6774dcf0b402cb7df19c5b6b226c9
    6 schema:citation sg:pub.10.1007/978-1-4614-7138-7
    7 sg:pub.10.1007/978-3-319-60928-7_32
    8 sg:pub.10.1007/978-3-540-30126-4_60
    9 sg:pub.10.1007/978-3-662-45052-9_6
    10 sg:pub.10.1007/bf00577878
    11 sg:pub.10.1007/bf00642541
    12 schema:datePublished 2020-10-08
    13 schema:datePublishedReg 2020-10-08
    14 schema:description One of the challenges of planetary science is the age determination of geological units on the surface of the different planetary bodies in the solar system. This serves to establish a chronology of the geological events occurring on these different bodies, hence to understand their formation and evolution processes. An approach for dating planetary surfaces relies on the analysis of the impact crater densities with size. Approaches have been proposed to automatically detect impact craters in order to facilitate the dating process. They rely on color values from images or elevation values from Digital Elevation Models (DEM). In this article, we propose a new approach for crater detection, more specifically using their rims. The craters can be characterized by a round shape that can be used as a feature. The developed method is based on an analysis of the DEM geometry, represented as a 3D mesh, followed by curvature analysis. The classification process is done with one layer perceptron. The validation of the method is performed on DEMs of Mars, acquired by a laser altimeter aboard NASA’s Mars Global Surveyor spacecraft and combined with a database of manually identified craters. The results show that the proposed approach significantly reduces the number of false negatives compared to others based on topographic information only.
    15 schema:genre article
    16 schema:isAccessibleForFree false
    17 schema:isPartOf N5180c6d57f294204ae8e29c9d878b5c9
    18 Ne0f25e0047a54f138ce48fb86d2791c8
    19 sg:journal.1026186
    20 schema:keywords Layer Perceptron
    21 Mars
    22 Mars Global Surveyor spacecraft
    23 NASA’s Mars Global Surveyor spacecraft
    24 Surveyor spacecraft
    25 age determination
    26 altimeter
    27 analysis
    28 approach
    29 article
    30 artificial neural network
    31 body
    32 challenges
    33 chronology
    34 classification process
    35 color values
    36 crater detection
    37 crater rim
    38 craters
    39 curvature analysis
    40 database
    41 dating process
    42 detection
    43 determination
    44 different bodies
    45 different planetary bodies
    46 digital elevation model
    47 elevation model
    48 elevation values
    49 events
    50 evolution process
    51 extraction
    52 false negatives
    53 features
    54 formation
    55 geological events
    56 geological units
    57 geometry
    58 images
    59 impact craters
    60 information
    61 labeling
    62 laser altimeter
    63 mesh
    64 method
    65 model
    66 negatives
    67 network
    68 neural network
    69 new approach
    70 number
    71 order
    72 perceptron
    73 planetary bodies
    74 planetary science
    75 planetary surfaces
    76 process
    77 results
    78 rim
    79 round shape
    80 science
    81 shape
    82 size
    83 solar system
    84 spacecraft
    85 surface
    86 system
    87 topographic information
    88 units
    89 validation
    90 values
    91 schema:name Automated Extraction of Crater Rims on 3D Meshes Combining Artificial Neural Network and Discrete Curvature Labeling
    92 schema:pagination 51-72
    93 schema:productId N096dfbf189c04abfa8b549a86b318a5e
    94 N5f40c30572b64433ab3beef08143c25a
    95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1131496279
    96 https://doi.org/10.1007/s11038-020-09535-7
    97 schema:sdDatePublished 2022-11-24T21:06
    98 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    99 schema:sdPublisher Nd5c6ec82bcc946fba6675524208a79ad
    100 schema:url https://doi.org/10.1007/s11038-020-09535-7
    101 sgo:license sg:explorer/license/
    102 sgo:sdDataset articles
    103 rdf:type schema:ScholarlyArticle
    104 N096dfbf189c04abfa8b549a86b318a5e schema:name dimensions_id
    105 schema:value pub.1131496279
    106 rdf:type schema:PropertyValue
    107 N4cd6774dcf0b402cb7df19c5b6b226c9 rdf:first sg:person.013747641002.50
    108 rdf:rest Nc03ffcfbd316453cbc94d64fdd0637e9
    109 N5180c6d57f294204ae8e29c9d878b5c9 schema:volumeNumber 124
    110 rdf:type schema:PublicationVolume
    111 N5f40c30572b64433ab3beef08143c25a schema:name doi
    112 schema:value 10.1007/s11038-020-09535-7
    113 rdf:type schema:PropertyValue
    114 N76dd479c4d8c41f9b084da88738b4d42 rdf:first sg:person.011261227562.03
    115 rdf:rest Nac6afbea008942b9a799cd406a46295c
    116 N7d257dc38e64467fa08220c8928a9cd7 rdf:first sg:person.014451474032.74
    117 rdf:rest N76dd479c4d8c41f9b084da88738b4d42
    118 N8e2ea0985f0e485a94657d42c22d7d6a rdf:first sg:person.010376126345.96
    119 rdf:rest rdf:nil
    120 Nac6afbea008942b9a799cd406a46295c rdf:first sg:person.013612773352.81
    121 rdf:rest N8e2ea0985f0e485a94657d42c22d7d6a
    122 Nc03ffcfbd316453cbc94d64fdd0637e9 rdf:first sg:person.01203771707.59
    123 rdf:rest N7d257dc38e64467fa08220c8928a9cd7
    124 Nd5c6ec82bcc946fba6675524208a79ad schema:name Springer Nature - SN SciGraph project
    125 rdf:type schema:Organization
    126 Ne0f25e0047a54f138ce48fb86d2791c8 schema:issueNumber 3-4
    127 rdf:type schema:PublicationIssue
    128 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    129 schema:name Physical Sciences
    130 rdf:type schema:DefinedTerm
    131 anzsrc-for:0201 schema:inDefinedTermSet anzsrc-for:
    132 schema:name Astronomical and Space Sciences
    133 rdf:type schema:DefinedTerm
    134 anzsrc-for:04 schema:inDefinedTermSet anzsrc-for:
    135 schema:name Earth Sciences
    136 rdf:type schema:DefinedTerm
    137 anzsrc-for:0403 schema:inDefinedTermSet anzsrc-for:
    138 schema:name Geology
    139 rdf:type schema:DefinedTerm
    140 sg:journal.1026186 schema:issn 0167-9295
    141 1573-0794
    142 schema:name Earth, Moon, and Planets
    143 schema:publisher Springer Nature
    144 rdf:type schema:Periodical
    145 sg:person.010376126345.96 schema:affiliation grid-institutes:None
    146 schema:familyName Mari
    147 schema:givenName Jean-Luc
    148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010376126345.96
    149 rdf:type schema:Person
    150 sg:person.011261227562.03 schema:affiliation grid-institutes:grid.440891.0
    151 schema:familyName Bouley
    152 schema:givenName Sylvain
    153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011261227562.03
    154 rdf:type schema:Person
    155 sg:person.01203771707.59 schema:affiliation grid-institutes:None
    156 schema:familyName Jorda
    157 schema:givenName Laurent
    158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01203771707.59
    159 rdf:type schema:Person
    160 sg:person.013612773352.81 schema:affiliation grid-institutes:grid.6981.6
    161 schema:familyName Manolova
    162 schema:givenName Agata
    163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013612773352.81
    164 rdf:type schema:Person
    165 sg:person.013747641002.50 schema:affiliation grid-institutes:grid.6981.6
    166 schema:familyName Christoff
    167 schema:givenName Nicole
    168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013747641002.50
    169 rdf:type schema:Person
    170 sg:person.014451474032.74 schema:affiliation grid-institutes:grid.498067.4
    171 schema:familyName Viseur
    172 schema:givenName Sophie
    173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014451474032.74
    174 rdf:type schema:Person
    175 sg:pub.10.1007/978-1-4614-7138-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044216575
    176 https://doi.org/10.1007/978-1-4614-7138-7
    177 rdf:type schema:CreativeWork
    178 sg:pub.10.1007/978-3-319-60928-7_32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085928886
    179 https://doi.org/10.1007/978-3-319-60928-7_32
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1007/978-3-540-30126-4_60 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043249531
    182 https://doi.org/10.1007/978-3-540-30126-4_60
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1007/978-3-662-45052-9_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045010905
    185 https://doi.org/10.1007/978-3-662-45052-9_6
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1007/bf00577878 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019290431
    188 https://doi.org/10.1007/bf00577878
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1007/bf00642541 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025349979
    191 https://doi.org/10.1007/bf00642541
    192 rdf:type schema:CreativeWork
    193 grid-institutes:None schema:alternateName Aix Marseille Université, CNRS, CNES, LAM, Marseille, France
    194 Aix Marseille Université, Université de Toulon, CNRS, LIS, Marseille, France
    195 schema:name Aix Marseille Université, CNRS, CNES, LAM, Marseille, France
    196 Aix Marseille Université, Université de Toulon, CNRS, LIS, Marseille, France
    197 rdf:type schema:Organization
    198 grid-institutes:grid.440891.0 schema:alternateName Institut Universitaire de France, Paris, France
    199 schema:name GEOPS – Géosciences Paris Sud, Univ. Paris-Sud, CNRS, Université Paris-Saclay, Orsay, France
    200 IMCCE – Observatoire de Paris, CNRS-UMR 8028, Paris, France
    201 Institut Universitaire de France, Paris, France
    202 rdf:type schema:Organization
    203 grid-institutes:grid.498067.4 schema:alternateName Aix Marseille Univ, CNRS, IRD, INRAE, CEREGE, Aix-en-Provence, France
    204 schema:name Aix Marseille Univ, CNRS, IRD, INRAE, CEREGE, Aix-en-Provence, France
    205 rdf:type schema:Organization
    206 grid-institutes:grid.6981.6 schema:alternateName Technical University of Sofia, Faculty of Telecommunications, blvd. Kl. Ohridski 8, 1796, Sofia, Bulgaria
    207 schema:name Technical University of Sofia, Faculty of Telecommunications, blvd. Kl. Ohridski 8, 1796, Sofia, Bulgaria
    208 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...