Ontology type: schema:ScholarlyArticle Open Access: True
2019-06-01
AUTHORSSaqib Rasool, Muddesar Iqbal, Tasos Dagiuklas, Zia Ul-Qayyum, Shancang Li
ABSTRACTMobile Ad-hoc Cloud (MAC) is the constellation of nearby mobile devices to serve the heavy computational needs of the resource-constrained edge devices. One of the major challenges of MAC is to convince the mobile devices to offer their limited resources for the shared computational pool. Credit-based rewarding system is considered as an effective way of incentivizing the arbitrary mobile devices for joining the MAC network and to earn the credits through computational crowdsourcing. The next challenge is to get the reliable computation as incentives attract the malicious devices to submit fake computational results for claiming their reward and we have used the blockchain based reputation system for identifying the malicious participants of MAC. This paper presents a malicious node identification algorithm integrated within the Iroha based permissioned blockchain. Iroha is a project of hyperledger which is focused on mobile devices and thus light-weight in nature. It is used for keeping the track of rewarding and reputation system driven by the malicious node detection algorithm. Experiments are conducted for evaluating the implemented test-bed and results show the effectiveness of algorithm in identifying the malicious devices and conducting reliable data analysis through the blockchain based computational crowdsourcing in MAC. More... »
PAGES153-163
http://scigraph.springernature.com/pub.10.1007/s11036-019-01221-x
DOIhttp://dx.doi.org/10.1007/s11036-019-01221-x
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1116291250
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information and Computing Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Information Systems",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "University of Gujrat, Gujrat, Pakistan",
"id": "http://www.grid.ac/institutes/grid.440562.1",
"name": [
"University of Gujrat, Gujrat, Pakistan"
],
"type": "Organization"
},
"familyName": "Rasool",
"givenName": "Saqib",
"id": "sg:person.010716243231.13",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010716243231.13"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "London South Bank University, London, UK",
"id": "http://www.grid.ac/institutes/grid.4756.0",
"name": [
"London South Bank University, London, UK"
],
"type": "Organization"
},
"familyName": "Iqbal",
"givenName": "Muddesar",
"id": "sg:person.07364535051.65",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07364535051.65"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "London South Bank University, London, UK",
"id": "http://www.grid.ac/institutes/grid.4756.0",
"name": [
"London South Bank University, London, UK"
],
"type": "Organization"
},
"familyName": "Dagiuklas",
"givenName": "Tasos",
"id": "sg:person.013724335035.39",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013724335035.39"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of Gujrat, Gujrat, Pakistan",
"id": "http://www.grid.ac/institutes/grid.440562.1",
"name": [
"University of Gujrat, Gujrat, Pakistan"
],
"type": "Organization"
},
"familyName": "Ul-Qayyum",
"givenName": "Zia",
"id": "sg:person.07572601767.45",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07572601767.45"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "University of the West of England, Bristol, UK",
"id": "http://www.grid.ac/institutes/grid.6518.a",
"name": [
"University of the West of England, Bristol, UK"
],
"type": "Organization"
},
"familyName": "Li",
"givenName": "Shancang",
"id": "sg:person.015235354045.99",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015235354045.99"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/978-3-319-63917-8_5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1100423970",
"https://doi.org/10.1007/978-3-319-63917-8_5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1186/2192-113x-2-15",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1030704143",
"https://doi.org/10.1186/2192-113x-2-15"
],
"type": "CreativeWork"
}
],
"datePublished": "2019-06-01",
"datePublishedReg": "2019-06-01",
"description": "Mobile Ad-hoc Cloud (MAC) is the constellation of nearby mobile devices to serve the heavy computational needs of the resource-constrained edge devices. One of the major challenges of MAC is to convince the mobile devices to offer their limited resources for the shared computational pool. Credit-based rewarding system is considered as an effective way of incentivizing the arbitrary mobile devices for joining the MAC network and to earn the credits through computational crowdsourcing. The next challenge is to get the reliable computation as incentives attract the malicious devices to submit fake computational results for claiming their reward and we have used the blockchain based reputation system for identifying the malicious participants of MAC. This paper presents a malicious node identification algorithm integrated within the Iroha based permissioned blockchain. Iroha is a project of hyperledger which is focused on mobile devices and thus light-weight in nature. It is used for keeping the track of rewarding and reputation system driven by the malicious node detection algorithm. Experiments are conducted for evaluating the implemented test-bed and results show the effectiveness of algorithm in identifying the malicious devices and conducting reliable data analysis through the blockchain based computational crowdsourcing in MAC.",
"genre": "article",
"id": "sg:pub.10.1007/s11036-019-01221-x",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1136741",
"issn": [
"1383-469X",
"1572-8153"
],
"name": "Mobile Networks and Applications",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "25"
}
],
"keywords": [
"mobile devices",
"malicious devices",
"reputation systems",
"malicious node detection algorithm",
"Mobile Ad Hoc Cloud",
"resource-constrained edge devices",
"reliable data analysis",
"Ad Hoc Cloud",
"nearby mobile devices",
"effectiveness of algorithms",
"edge devices",
"Mobile Ad",
"malicious participants",
"computational needs",
"MAC networks",
"blockchain",
"detection algorithm",
"data analysis",
"algorithm",
"reliable computation",
"limited resources",
"identification algorithm",
"computational results",
"MAC",
"cloud",
"rewarding system",
"major challenge",
"Hyperledger",
"Crowdsourcing",
"devices",
"effective way",
"computational",
"system",
"network",
"computation",
"challenges",
"AD",
"next challenge",
"resources",
"project",
"effectiveness",
"track",
"way",
"need",
"results",
"experiments",
"reward",
"analysis",
"constellation",
"nature",
"incentives",
"rewarding",
"credit",
"pool",
"participants",
"paper"
],
"name": "Reliable Data Analysis through Blockchain based Crowdsourcing in Mobile Ad-hoc Cloud",
"pagination": "153-163",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1116291250"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s11036-019-01221-x"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s11036-019-01221-x",
"https://app.dimensions.ai/details/publication/pub.1116291250"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:36",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_825.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s11036-019-01221-x"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11036-019-01221-x'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11036-019-01221-x'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11036-019-01221-x'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11036-019-01221-x'
This table displays all metadata directly associated to this object as RDF triples.
156 TRIPLES
22 PREDICATES
83 URIs
73 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s11036-019-01221-x | schema:about | anzsrc-for:08 |
2 | ″ | ″ | anzsrc-for:0806 |
3 | ″ | schema:author | N4c2c938cec3c448cbf0376eff491b7d5 |
4 | ″ | schema:citation | sg:pub.10.1007/978-3-319-63917-8_5 |
5 | ″ | ″ | sg:pub.10.1186/2192-113x-2-15 |
6 | ″ | schema:datePublished | 2019-06-01 |
7 | ″ | schema:datePublishedReg | 2019-06-01 |
8 | ″ | schema:description | Mobile Ad-hoc Cloud (MAC) is the constellation of nearby mobile devices to serve the heavy computational needs of the resource-constrained edge devices. One of the major challenges of MAC is to convince the mobile devices to offer their limited resources for the shared computational pool. Credit-based rewarding system is considered as an effective way of incentivizing the arbitrary mobile devices for joining the MAC network and to earn the credits through computational crowdsourcing. The next challenge is to get the reliable computation as incentives attract the malicious devices to submit fake computational results for claiming their reward and we have used the blockchain based reputation system for identifying the malicious participants of MAC. This paper presents a malicious node identification algorithm integrated within the Iroha based permissioned blockchain. Iroha is a project of hyperledger which is focused on mobile devices and thus light-weight in nature. It is used for keeping the track of rewarding and reputation system driven by the malicious node detection algorithm. Experiments are conducted for evaluating the implemented test-bed and results show the effectiveness of algorithm in identifying the malicious devices and conducting reliable data analysis through the blockchain based computational crowdsourcing in MAC. |
9 | ″ | schema:genre | article |
10 | ″ | schema:inLanguage | en |
11 | ″ | schema:isAccessibleForFree | true |
12 | ″ | schema:isPartOf | N87a8a3ff19644340910d7b5d8bb46657 |
13 | ″ | ″ | N94a544fe79d64680a9b888537e2209d5 |
14 | ″ | ″ | sg:journal.1136741 |
15 | ″ | schema:keywords | AD |
16 | ″ | ″ | Ad Hoc Cloud |
17 | ″ | ″ | Crowdsourcing |
18 | ″ | ″ | Hyperledger |
19 | ″ | ″ | MAC |
20 | ″ | ″ | MAC networks |
21 | ″ | ″ | Mobile Ad |
22 | ″ | ″ | Mobile Ad Hoc Cloud |
23 | ″ | ″ | algorithm |
24 | ″ | ″ | analysis |
25 | ″ | ″ | blockchain |
26 | ″ | ″ | challenges |
27 | ″ | ″ | cloud |
28 | ″ | ″ | computation |
29 | ″ | ″ | computational |
30 | ″ | ″ | computational needs |
31 | ″ | ″ | computational results |
32 | ″ | ″ | constellation |
33 | ″ | ″ | credit |
34 | ″ | ″ | data analysis |
35 | ″ | ″ | detection algorithm |
36 | ″ | ″ | devices |
37 | ″ | ″ | edge devices |
38 | ″ | ″ | effective way |
39 | ″ | ″ | effectiveness |
40 | ″ | ″ | effectiveness of algorithms |
41 | ″ | ″ | experiments |
42 | ″ | ″ | identification algorithm |
43 | ″ | ″ | incentives |
44 | ″ | ″ | limited resources |
45 | ″ | ″ | major challenge |
46 | ″ | ″ | malicious devices |
47 | ″ | ″ | malicious node detection algorithm |
48 | ″ | ″ | malicious participants |
49 | ″ | ″ | mobile devices |
50 | ″ | ″ | nature |
51 | ″ | ″ | nearby mobile devices |
52 | ″ | ″ | need |
53 | ″ | ″ | network |
54 | ″ | ″ | next challenge |
55 | ″ | ″ | paper |
56 | ″ | ″ | participants |
57 | ″ | ″ | pool |
58 | ″ | ″ | project |
59 | ″ | ″ | reliable computation |
60 | ″ | ″ | reliable data analysis |
61 | ″ | ″ | reputation systems |
62 | ″ | ″ | resource-constrained edge devices |
63 | ″ | ″ | resources |
64 | ″ | ″ | results |
65 | ″ | ″ | reward |
66 | ″ | ″ | rewarding |
67 | ″ | ″ | rewarding system |
68 | ″ | ″ | system |
69 | ″ | ″ | track |
70 | ″ | ″ | way |
71 | ″ | schema:name | Reliable Data Analysis through Blockchain based Crowdsourcing in Mobile Ad-hoc Cloud |
72 | ″ | schema:pagination | 153-163 |
73 | ″ | schema:productId | N5b8e1d4143864de0acb43de782c289e0 |
74 | ″ | ″ | N82ec43d469874dfebf097ec97b20252f |
75 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1116291250 |
76 | ″ | ″ | https://doi.org/10.1007/s11036-019-01221-x |
77 | ″ | schema:sdDatePublished | 2022-05-20T07:36 |
78 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
79 | ″ | schema:sdPublisher | N96d26a25208e4028ab086212581ffd7b |
80 | ″ | schema:url | https://doi.org/10.1007/s11036-019-01221-x |
81 | ″ | sgo:license | sg:explorer/license/ |
82 | ″ | sgo:sdDataset | articles |
83 | ″ | rdf:type | schema:ScholarlyArticle |
84 | N2663c00f097745ff8911311ac3451aef | rdf:first | sg:person.07364535051.65 |
85 | ″ | rdf:rest | Ne8b391831a7b4bcfb00f6f4a2d0844db |
86 | N4c2c938cec3c448cbf0376eff491b7d5 | rdf:first | sg:person.010716243231.13 |
87 | ″ | rdf:rest | N2663c00f097745ff8911311ac3451aef |
88 | N586595212bac439794760da52918cdba | rdf:first | sg:person.07572601767.45 |
89 | ″ | rdf:rest | N96db58f82cc141e185fe8cea36e1398f |
90 | N5b8e1d4143864de0acb43de782c289e0 | schema:name | dimensions_id |
91 | ″ | schema:value | pub.1116291250 |
92 | ″ | rdf:type | schema:PropertyValue |
93 | N82ec43d469874dfebf097ec97b20252f | schema:name | doi |
94 | ″ | schema:value | 10.1007/s11036-019-01221-x |
95 | ″ | rdf:type | schema:PropertyValue |
96 | N87a8a3ff19644340910d7b5d8bb46657 | schema:issueNumber | 1 |
97 | ″ | rdf:type | schema:PublicationIssue |
98 | N94a544fe79d64680a9b888537e2209d5 | schema:volumeNumber | 25 |
99 | ″ | rdf:type | schema:PublicationVolume |
100 | N96d26a25208e4028ab086212581ffd7b | schema:name | Springer Nature - SN SciGraph project |
101 | ″ | rdf:type | schema:Organization |
102 | N96db58f82cc141e185fe8cea36e1398f | rdf:first | sg:person.015235354045.99 |
103 | ″ | rdf:rest | rdf:nil |
104 | Ne8b391831a7b4bcfb00f6f4a2d0844db | rdf:first | sg:person.013724335035.39 |
105 | ″ | rdf:rest | N586595212bac439794760da52918cdba |
106 | anzsrc-for:08 | schema:inDefinedTermSet | anzsrc-for: |
107 | ″ | schema:name | Information and Computing Sciences |
108 | ″ | rdf:type | schema:DefinedTerm |
109 | anzsrc-for:0806 | schema:inDefinedTermSet | anzsrc-for: |
110 | ″ | schema:name | Information Systems |
111 | ″ | rdf:type | schema:DefinedTerm |
112 | sg:journal.1136741 | schema:issn | 1383-469X |
113 | ″ | ″ | 1572-8153 |
114 | ″ | schema:name | Mobile Networks and Applications |
115 | ″ | schema:publisher | Springer Nature |
116 | ″ | rdf:type | schema:Periodical |
117 | sg:person.010716243231.13 | schema:affiliation | grid-institutes:grid.440562.1 |
118 | ″ | schema:familyName | Rasool |
119 | ″ | schema:givenName | Saqib |
120 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010716243231.13 |
121 | ″ | rdf:type | schema:Person |
122 | sg:person.013724335035.39 | schema:affiliation | grid-institutes:grid.4756.0 |
123 | ″ | schema:familyName | Dagiuklas |
124 | ″ | schema:givenName | Tasos |
125 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013724335035.39 |
126 | ″ | rdf:type | schema:Person |
127 | sg:person.015235354045.99 | schema:affiliation | grid-institutes:grid.6518.a |
128 | ″ | schema:familyName | Li |
129 | ″ | schema:givenName | Shancang |
130 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015235354045.99 |
131 | ″ | rdf:type | schema:Person |
132 | sg:person.07364535051.65 | schema:affiliation | grid-institutes:grid.4756.0 |
133 | ″ | schema:familyName | Iqbal |
134 | ″ | schema:givenName | Muddesar |
135 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07364535051.65 |
136 | ″ | rdf:type | schema:Person |
137 | sg:person.07572601767.45 | schema:affiliation | grid-institutes:grid.440562.1 |
138 | ″ | schema:familyName | Ul-Qayyum |
139 | ″ | schema:givenName | Zia |
140 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07572601767.45 |
141 | ″ | rdf:type | schema:Person |
142 | sg:pub.10.1007/978-3-319-63917-8_5 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1100423970 |
143 | ″ | ″ | https://doi.org/10.1007/978-3-319-63917-8_5 |
144 | ″ | rdf:type | schema:CreativeWork |
145 | sg:pub.10.1186/2192-113x-2-15 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1030704143 |
146 | ″ | ″ | https://doi.org/10.1186/2192-113x-2-15 |
147 | ″ | rdf:type | schema:CreativeWork |
148 | grid-institutes:grid.440562.1 | schema:alternateName | University of Gujrat, Gujrat, Pakistan |
149 | ″ | schema:name | University of Gujrat, Gujrat, Pakistan |
150 | ″ | rdf:type | schema:Organization |
151 | grid-institutes:grid.4756.0 | schema:alternateName | London South Bank University, London, UK |
152 | ″ | schema:name | London South Bank University, London, UK |
153 | ″ | rdf:type | schema:Organization |
154 | grid-institutes:grid.6518.a | schema:alternateName | University of the West of England, Bristol, UK |
155 | ″ | schema:name | University of the West of England, Bristol, UK |
156 | ″ | rdf:type | schema:Organization |