Genetic polymorphism analysis of mitochondrial DNA from Chinese Xinjiang Kazak ethnic group by a novel mitochondrial DNA genotyping panel View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-02

AUTHORS

Tong Xie, Li Hu, Yu-Xin Guo, Yu-Chun Li, Feng Chen, Bo-Feng Zhu

ABSTRACT

Genetic polymorphism analysis of 60 mitochondrial DNA (mtDNA) loci in Chinese Xinjiang Kazak group was conducted in this study. Blood samples from 141 unrelated healthy volunteers were randomly collected from Chinese Kazak ethnic group in Ili, Xinjiang Uygur Autonomous region. Among these mtDNA loci, single nucleotide transition was the most commonly observed variant (87.93%). A total of 25 haplogroups and 79 haplotypes were found in Kazak group, and Haplogroup D4 was the most common haplogroup (21.28%). Among the entire 79 haplotypes, 53 of them were observed for only once, 14 for twice. The haplotype diversity was 0.978 ± 0.005, and the nucleotide diversity was 0.17449. The detection of (CA)n and 9-bp deletion polymorphisms could improve the discrimination power of the mtDNA genetic marker. Moreover, Xinjiang Kazak group was compared with other previously reported groups to infer its genetic background. The present results revealed that Xinjiang Kazak ethnic group was genetically closer related to Xinjiang Uygur, Xinjiang Uzbek and Xinjiang Han populations. Meanwhile, our results also indicated the potential closer genetic relationships among Xinjiang Kazak group with Altaian Kazak as well as Xinjiang Xibe group. In conclusion, this novel mtDNA panel could be effectively utilized for forensic applications. Additionally, to further reveal the genetic background of Chinese Kazak group, more relevant populations and genetic markers should be incorporated in our future study. More... »

PAGES

17-25

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11033-018-4375-5

DOI

http://dx.doi.org/10.1007/s11033-018-4375-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1109928810

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/30446962


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Southern Medical University", 
          "id": "https://www.grid.ac/institutes/grid.284723.8", 
          "name": [
            "School of Forensic Medicine, Southern Medical University, 510515, Guangzhou, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xie", 
        "givenName": "Tong", 
        "id": "sg:person.01175634513.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01175634513.14"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing Medical University", 
          "id": "https://www.grid.ac/institutes/grid.89957.3a", 
          "name": [
            "Department of Forensic Medicine, Nanjing Medical University, 210029, Nanjing, Jiangsu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hu", 
        "givenName": "Li", 
        "id": "sg:person.07763557377.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07763557377.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Xi'an Jiaotong University", 
          "id": "https://www.grid.ac/institutes/grid.43169.39", 
          "name": [
            "Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi\u2019an Jiaotong University, Xi\u2019an, Shaanxi, People\u2019s Republic of China", 
            "Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi\u2019an Jiaotong University, Xi\u2019an, Shaanxi, People\u2019s Republic of China", 
            "College of Medicine & Forensics, Xi\u2019an Jiaotong University Health Science Center, 710061, Xi\u2019an, Shaanxi, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Guo", 
        "givenName": "Yu-Xin", 
        "id": "sg:person.01166663535.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166663535.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kunming Institute of Zoology", 
          "id": "https://www.grid.ac/institutes/grid.419010.d", 
          "name": [
            "State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, People\u2019s Republic of China", 
            "Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 650223, Kunming, China", 
            "Kunming Key Laboratory of Healthy Aging Molecular Mechanism Study, 650223, Kunming, China", 
            "KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, 650223, Kunming, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Yu-Chun", 
        "id": "sg:person.01260516243.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260516243.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Nanjing Medical University", 
          "id": "https://www.grid.ac/institutes/grid.89957.3a", 
          "name": [
            "Department of Forensic Medicine, Nanjing Medical University, 210029, Nanjing, Jiangsu, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Feng", 
        "id": "sg:person.01210303406.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01210303406.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Xi'an Jiaotong University", 
          "id": "https://www.grid.ac/institutes/grid.43169.39", 
          "name": [
            "School of Forensic Medicine, Southern Medical University, 510515, Guangzhou, People\u2019s Republic of China", 
            "Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi\u2019an Jiaotong University, Xi\u2019an, Shaanxi, People\u2019s Republic of China", 
            "Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi\u2019an Jiaotong University, Xi\u2019an, Shaanxi, People\u2019s Republic of China", 
            "College of Medicine & Forensics, Xi\u2019an Jiaotong University Health Science Center, 710061, Xi\u2019an, Shaanxi, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhu", 
        "givenName": "Bo-Feng", 
        "id": "sg:person.0621420354.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621420354.67"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/ng1092-135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000374004", 
          "https://doi.org/10.1038/ng1092-135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.76.10.5269", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002874048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/oxfordjournals.molbev.a003996", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005475137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/elps.201400047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006097405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ajpa.22212", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006480098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00414-015-1249-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010340249", 
          "https://doi.org/10.1007/s00414-015-1249-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msh238", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011924441"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/humu.20921", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019292516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fsigen.2014.06.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020128294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00414-010-0466-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022222633", 
          "https://doi.org/10.1007/s00414-010-0466-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00414-010-0466-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022222633", 
          "https://doi.org/10.1007/s00414-010-0466-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ajpa.20802", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031408504"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/000271620559700101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031891713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/000271620559700101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031891713"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1096-8644(199802)105:2<109::aid-ajpa1>3.0.co;2-q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034767269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/290457a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038487698", 
          "https://doi.org/10.1038/290457a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1096-8644(199911)110:3<243::aid-ajpa1>3.0.co;2-m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040666885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/13779", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040703029", 
          "https://doi.org/10.1038/13779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/13779", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040703029", 
          "https://doi.org/10.1038/13779"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ajpa.20602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047507741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ajpa.20602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047507741"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0379-0738(00)00250-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048217449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/342096", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048574588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fsigen.2014.09.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051952822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.fsigen.2010.01.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053361195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/302479", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058610052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/338999", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058638044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1109792", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062451600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2144/000114018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069096512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074365093", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075301228", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1079130311", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1081652674", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep44407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084132297", 
          "https://doi.org/10.1038/srep44407"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-02", 
    "datePublishedReg": "2019-02-01", 
    "description": "Genetic polymorphism analysis of\u00a060 mitochondrial DNA (mtDNA) loci in Chinese Xinjiang Kazak group\u00a0was conducted in this study. Blood samples from 141 unrelated healthy volunteers were randomly collected from Chinese Kazak ethnic group in Ili, Xinjiang Uygur Autonomous region. Among these mtDNA loci, single nucleotide transition was the most commonly observed variant (87.93%). A total of 25 haplogroups and 79 haplotypes were found in Kazak group, and Haplogroup D4 was the most common haplogroup (21.28%). Among the entire 79 haplotypes, 53 of them were observed for\u00a0only once, 14 for\u00a0twice. The haplotype diversity was 0.978\u2009\u00b1\u20090.005, and the nucleotide diversity was 0.17449. The detection of (CA)n and 9-bp deletion polymorphisms could improve the discrimination power of the mtDNA genetic marker. Moreover, Xinjiang\u00a0Kazak group was compared with other previously reported groups to infer its genetic background. The present\u00a0results revealed that Xinjiang\u00a0Kazak ethnic group was genetically closer related to Xinjiang Uygur, Xinjiang Uzbek and Xinjiang Han populations. Meanwhile, our results also indicated the potential closer genetic relationships among Xinjiang\u00a0Kazak group with Altaian Kazak as well as Xinjiang Xibe group. In conclusion, this novel mtDNA panel could be effectively utilized for forensic applications. Additionally, to further reveal the genetic background of Chinese Kazak group, more relevant populations and genetic markers should be incorporated in our future study.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11033-018-4375-5", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018503", 
        "issn": [
          "0301-4851", 
          "1573-4978"
        ], 
        "name": "Molecular Biology Reports", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "46"
      }
    ], 
    "name": "Genetic polymorphism analysis of mitochondrial DNA from Chinese Xinjiang Kazak ethnic group by a novel mitochondrial DNA genotyping panel", 
    "pagination": "17-25", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "df0fd7854e907ff141237065f4f9915e79072e69a6783e3f63894ed845bd98b5"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "30446962"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0403234"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11033-018-4375-5"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1109928810"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11033-018-4375-5", 
      "https://app.dimensions.ai/details/publication/pub.1109928810"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000368_0000000368/records_78935_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11033-018-4375-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11033-018-4375-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11033-018-4375-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11033-018-4375-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11033-018-4375-5'


 

This table displays all metadata directly associated to this object as RDF triples.

211 TRIPLES      21 PREDICATES      59 URIs      21 LITERALS      9 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11033-018-4375-5 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author N6f5e09d1edb745589c5f632e253232e0
4 schema:citation sg:pub.10.1007/s00414-010-0466-0
5 sg:pub.10.1007/s00414-015-1249-4
6 sg:pub.10.1038/13779
7 sg:pub.10.1038/290457a0
8 sg:pub.10.1038/ng1092-135
9 sg:pub.10.1038/srep44407
10 https://app.dimensions.ai/details/publication/pub.1074365093
11 https://app.dimensions.ai/details/publication/pub.1075301228
12 https://app.dimensions.ai/details/publication/pub.1079130311
13 https://app.dimensions.ai/details/publication/pub.1081652674
14 https://doi.org/10.1002/(sici)1096-8644(199802)105:2<109::aid-ajpa1>3.0.co;2-q
15 https://doi.org/10.1002/(sici)1096-8644(199911)110:3<243::aid-ajpa1>3.0.co;2-m
16 https://doi.org/10.1002/ajpa.20602
17 https://doi.org/10.1002/ajpa.20802
18 https://doi.org/10.1002/ajpa.22212
19 https://doi.org/10.1002/elps.201400047
20 https://doi.org/10.1002/humu.20921
21 https://doi.org/10.1016/j.fsigen.2010.01.015
22 https://doi.org/10.1016/j.fsigen.2014.06.001
23 https://doi.org/10.1016/j.fsigen.2014.09.012
24 https://doi.org/10.1016/s0379-0738(00)00250-4
25 https://doi.org/10.1073/pnas.76.10.5269
26 https://doi.org/10.1086/302479
27 https://doi.org/10.1086/338999
28 https://doi.org/10.1086/342096
29 https://doi.org/10.1093/molbev/msh238
30 https://doi.org/10.1093/oxfordjournals.molbev.a003996
31 https://doi.org/10.1126/science.1109792
32 https://doi.org/10.1177/000271620559700101
33 https://doi.org/10.2144/000114018
34 schema:datePublished 2019-02
35 schema:datePublishedReg 2019-02-01
36 schema:description Genetic polymorphism analysis of 60 mitochondrial DNA (mtDNA) loci in Chinese Xinjiang Kazak group was conducted in this study. Blood samples from 141 unrelated healthy volunteers were randomly collected from Chinese Kazak ethnic group in Ili, Xinjiang Uygur Autonomous region. Among these mtDNA loci, single nucleotide transition was the most commonly observed variant (87.93%). A total of 25 haplogroups and 79 haplotypes were found in Kazak group, and Haplogroup D4 was the most common haplogroup (21.28%). Among the entire 79 haplotypes, 53 of them were observed for only once, 14 for twice. The haplotype diversity was 0.978 ± 0.005, and the nucleotide diversity was 0.17449. The detection of (CA)<sub>n</sub> and 9-bp deletion polymorphisms could improve the discrimination power of the mtDNA genetic marker. Moreover, Xinjiang Kazak group was compared with other previously reported groups to infer its genetic background. The present results revealed that Xinjiang Kazak ethnic group was genetically closer related to Xinjiang Uygur, Xinjiang Uzbek and Xinjiang Han populations. Meanwhile, our results also indicated the potential closer genetic relationships among Xinjiang Kazak group with Altaian Kazak as well as Xinjiang Xibe group. In conclusion, this novel mtDNA panel could be effectively utilized for forensic applications. Additionally, to further reveal the genetic background of Chinese Kazak group, more relevant populations and genetic markers should be incorporated in our future study.
37 schema:genre research_article
38 schema:inLanguage en
39 schema:isAccessibleForFree false
40 schema:isPartOf N979d5fa9181e43b7a1737fbc535dee0a
41 Nf14b776fab834726a8b3a2b13a2a254f
42 sg:journal.1018503
43 schema:name Genetic polymorphism analysis of mitochondrial DNA from Chinese Xinjiang Kazak ethnic group by a novel mitochondrial DNA genotyping panel
44 schema:pagination 17-25
45 schema:productId N0578293697684f9b8ce8b9f3fc890fd7
46 N0f641639fbd543daad0064d5a1818e06
47 N243f30093d9048f28b4d0917aca4411b
48 Nabdea6b8aabd484999344e4b688a86ed
49 Ne85b027f772b47bf871ff7abfb89a806
50 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109928810
51 https://doi.org/10.1007/s11033-018-4375-5
52 schema:sdDatePublished 2019-04-11T13:17
53 schema:sdLicense https://scigraph.springernature.com/explorer/license/
54 schema:sdPublisher N6c3e3aa948914495b15e1121729b03db
55 schema:url https://link.springer.com/10.1007%2Fs11033-018-4375-5
56 sgo:license sg:explorer/license/
57 sgo:sdDataset articles
58 rdf:type schema:ScholarlyArticle
59 N0578293697684f9b8ce8b9f3fc890fd7 schema:name doi
60 schema:value 10.1007/s11033-018-4375-5
61 rdf:type schema:PropertyValue
62 N0f641639fbd543daad0064d5a1818e06 schema:name readcube_id
63 schema:value df0fd7854e907ff141237065f4f9915e79072e69a6783e3f63894ed845bd98b5
64 rdf:type schema:PropertyValue
65 N243f30093d9048f28b4d0917aca4411b schema:name nlm_unique_id
66 schema:value 0403234
67 rdf:type schema:PropertyValue
68 N5fcdd59288f948efa0a2b95f583bb3c7 rdf:first sg:person.07763557377.93
69 rdf:rest N86d2af49f3114b4b88969b9dd31a1ae7
70 N6c3e3aa948914495b15e1121729b03db schema:name Springer Nature - SN SciGraph project
71 rdf:type schema:Organization
72 N6f5e09d1edb745589c5f632e253232e0 rdf:first sg:person.01175634513.14
73 rdf:rest N5fcdd59288f948efa0a2b95f583bb3c7
74 N78ac396da0d4427bbba1204fc5561045 rdf:first sg:person.0621420354.67
75 rdf:rest rdf:nil
76 N86d2af49f3114b4b88969b9dd31a1ae7 rdf:first sg:person.01166663535.25
77 rdf:rest Nee9ec036dee4401a882c13d442e43ebb
78 N979d5fa9181e43b7a1737fbc535dee0a schema:volumeNumber 46
79 rdf:type schema:PublicationVolume
80 Nabdea6b8aabd484999344e4b688a86ed schema:name pubmed_id
81 schema:value 30446962
82 rdf:type schema:PropertyValue
83 Nca35f191f5574b1ea7d413d31def66b1 rdf:first sg:person.01210303406.73
84 rdf:rest N78ac396da0d4427bbba1204fc5561045
85 Ne85b027f772b47bf871ff7abfb89a806 schema:name dimensions_id
86 schema:value pub.1109928810
87 rdf:type schema:PropertyValue
88 Nee9ec036dee4401a882c13d442e43ebb rdf:first sg:person.01260516243.13
89 rdf:rest Nca35f191f5574b1ea7d413d31def66b1
90 Nf14b776fab834726a8b3a2b13a2a254f schema:issueNumber 1
91 rdf:type schema:PublicationIssue
92 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
93 schema:name Biological Sciences
94 rdf:type schema:DefinedTerm
95 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
96 schema:name Genetics
97 rdf:type schema:DefinedTerm
98 sg:journal.1018503 schema:issn 0301-4851
99 1573-4978
100 schema:name Molecular Biology Reports
101 rdf:type schema:Periodical
102 sg:person.01166663535.25 schema:affiliation https://www.grid.ac/institutes/grid.43169.39
103 schema:familyName Guo
104 schema:givenName Yu-Xin
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01166663535.25
106 rdf:type schema:Person
107 sg:person.01175634513.14 schema:affiliation https://www.grid.ac/institutes/grid.284723.8
108 schema:familyName Xie
109 schema:givenName Tong
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01175634513.14
111 rdf:type schema:Person
112 sg:person.01210303406.73 schema:affiliation https://www.grid.ac/institutes/grid.89957.3a
113 schema:familyName Chen
114 schema:givenName Feng
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01210303406.73
116 rdf:type schema:Person
117 sg:person.01260516243.13 schema:affiliation https://www.grid.ac/institutes/grid.419010.d
118 schema:familyName Li
119 schema:givenName Yu-Chun
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01260516243.13
121 rdf:type schema:Person
122 sg:person.0621420354.67 schema:affiliation https://www.grid.ac/institutes/grid.43169.39
123 schema:familyName Zhu
124 schema:givenName Bo-Feng
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0621420354.67
126 rdf:type schema:Person
127 sg:person.07763557377.93 schema:affiliation https://www.grid.ac/institutes/grid.89957.3a
128 schema:familyName Hu
129 schema:givenName Li
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07763557377.93
131 rdf:type schema:Person
132 sg:pub.10.1007/s00414-010-0466-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022222633
133 https://doi.org/10.1007/s00414-010-0466-0
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/s00414-015-1249-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010340249
136 https://doi.org/10.1007/s00414-015-1249-4
137 rdf:type schema:CreativeWork
138 sg:pub.10.1038/13779 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040703029
139 https://doi.org/10.1038/13779
140 rdf:type schema:CreativeWork
141 sg:pub.10.1038/290457a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038487698
142 https://doi.org/10.1038/290457a0
143 rdf:type schema:CreativeWork
144 sg:pub.10.1038/ng1092-135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000374004
145 https://doi.org/10.1038/ng1092-135
146 rdf:type schema:CreativeWork
147 sg:pub.10.1038/srep44407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084132297
148 https://doi.org/10.1038/srep44407
149 rdf:type schema:CreativeWork
150 https://app.dimensions.ai/details/publication/pub.1074365093 schema:CreativeWork
151 https://app.dimensions.ai/details/publication/pub.1075301228 schema:CreativeWork
152 https://app.dimensions.ai/details/publication/pub.1079130311 schema:CreativeWork
153 https://app.dimensions.ai/details/publication/pub.1081652674 schema:CreativeWork
154 https://doi.org/10.1002/(sici)1096-8644(199802)105:2<109::aid-ajpa1>3.0.co;2-q schema:sameAs https://app.dimensions.ai/details/publication/pub.1034767269
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1002/(sici)1096-8644(199911)110:3<243::aid-ajpa1>3.0.co;2-m schema:sameAs https://app.dimensions.ai/details/publication/pub.1040666885
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1002/ajpa.20602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047507741
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1002/ajpa.20802 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031408504
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1002/ajpa.22212 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006480098
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1002/elps.201400047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006097405
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1002/humu.20921 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019292516
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.fsigen.2010.01.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053361195
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.fsigen.2014.06.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020128294
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.fsigen.2014.09.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051952822
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/s0379-0738(00)00250-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048217449
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1073/pnas.76.10.5269 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002874048
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1086/302479 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058610052
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1086/338999 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058638044
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1086/342096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048574588
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1093/molbev/msh238 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011924441
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1093/oxfordjournals.molbev.a003996 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005475137
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1126/science.1109792 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062451600
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1177/000271620559700101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031891713
191 rdf:type schema:CreativeWork
192 https://doi.org/10.2144/000114018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069096512
193 rdf:type schema:CreativeWork
194 https://www.grid.ac/institutes/grid.284723.8 schema:alternateName Southern Medical University
195 schema:name School of Forensic Medicine, Southern Medical University, 510515, Guangzhou, People’s Republic of China
196 rdf:type schema:Organization
197 https://www.grid.ac/institutes/grid.419010.d schema:alternateName Kunming Institute of Zoology
198 schema:name Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 650223, Kunming, China
199 KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, 650223, Kunming, China
200 Kunming Key Laboratory of Healthy Aging Molecular Mechanism Study, 650223, Kunming, China
201 State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, People’s Republic of China
202 rdf:type schema:Organization
203 https://www.grid.ac/institutes/grid.43169.39 schema:alternateName Xi'an Jiaotong University
204 schema:name Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
205 College of Medicine & Forensics, Xi’an Jiaotong University Health Science Center, 710061, Xi’an, Shaanxi, People’s Republic of China
206 Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
207 School of Forensic Medicine, Southern Medical University, 510515, Guangzhou, People’s Republic of China
208 rdf:type schema:Organization
209 https://www.grid.ac/institutes/grid.89957.3a schema:alternateName Nanjing Medical University
210 schema:name Department of Forensic Medicine, Nanjing Medical University, 210029, Nanjing, Jiangsu, China
211 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...