The discovery approaches and detection methods of microRNAs View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-08

AUTHORS

Yong Huang, Quan Zou, Sheng Peng Wang, Shun Ming Tang, Guo Zheng Zhang, Xing Jia Shen

ABSTRACT

MicroRNAs (miRNAs) are small, highly conserved, non-coding RNAs that regulate gene expression of target mRNAs through cleavage or translational inhibition. Computer-based approaches for miRNA gene identification are being considered as indispensable in miRNAs research. Similarly, experimental approaches for detection of miRNAs are crucial to the testing and validating of computational algorithms. The detection of miRNAs in tissues or cells can supply valuable information for investigating the biological function of these molecules. Selective and highly sensitive detection methods will pave the way for extended understanding of miRNA function within organisms. In this review, we summarize the various computational methods for identification of miRNAs as well as the methodologies that have been developed to detection miRNAs. More... »

PAGES

4125-4135

References to SciGraph publications

  • 2008-02. Functional aspects of animal microRNAs in CELLULAR AND MOLECULAR LIFE SCIENCES
  • 2005-07. Identification of hundreds of conserved and nonconserved human microRNAs in NATURE GENETICS
  • 2007-12. Using expression profiling data to identify human microRNA targets in NATURE METHODS
  • 2006-06. Approaches to microRNA discovery in NATURE GENETICS
  • 2008-12. Learning from positive examples when the negative class is undetermined- microRNA gene identification in ALGORITHMS FOR MOLECULAR BIOLOGY
  • 2008-04. Discovering microRNAs from deep sequencing data using miRDeep in NATURE BIOTECHNOLOGY
  • 2009-06. MicroRNA detection by microarray in ANALYTICAL AND BIOANALYTICAL CHEMISTRY
  • 2003-12. MicroRNA targets in Drosophila in GENOME BIOLOGY
  • 2003-07. Computational identification of DrosophilamicroRNA genes in GENOME BIOLOGY
  • 2010-01. Sequencing technologies — the next generation in NATURE REVIEWS GENETICS
  • 2000-02. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans in NATURE
  • 2009-12. Cloning and identification of microRNAs in bovine alveolar macrophages in MOLECULAR AND CELLULAR BIOCHEMISTRY
  • 2005-12. Identification of clustered microRNAs using an ab initio prediction method in BMC BIOINFORMATICS
  • 2008-02. Direct detection of small RNAs using splinted ligation in NATURE PROTOCOLS
  • 2009-06. Identification and Characteristics of Cattle MicroRNAs by Homology Searching and Small RNA Cloning in BIOCHEMICAL GENETICS
  • 2006-01. In situ detection of miRNAs in animal embryos using LNA-modified oligonucleotide probes in NATURE METHODS
  • 2008-11. Accurate whole human genome sequencing using reversible terminator chemistry in NATURE
  • 2005-12. Classification of real and pseudo microRNA precursors using local structure-sequence features and support vector machine in BMC BIOINFORMATICS
  • 2011-03. Biological functions of microRNAs: a review in JOURNAL OF PHYSIOLOGY AND BIOCHEMISTRY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11033-010-0532-1

    DOI

    http://dx.doi.org/10.1007/s11033-010-0532-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1013339307

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/21107708


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Computational Biology", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "MicroRNAs", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Reverse Transcriptase Polymerase Chain Reaction", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Sequence Analysis, RNA", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Sericultural Research Institute", 
              "id": "https://www.grid.ac/institutes/grid.487615.9", 
              "name": [
                "Jiang Su University of Science and Technology, 212018, Zhenjiang, Jiangsu, People\u2019s Republic of China", 
                "The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, 212018, Zhenjiang, Jiangsu, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Huang", 
            "givenName": "Yong", 
            "id": "sg:person.01031113006.74", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01031113006.74"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Xiamen University", 
              "id": "https://www.grid.ac/institutes/grid.12955.3a", 
              "name": [
                "School of Information Science and Technology of Xiamen University, 361005, Xiamen, Fujian, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zou", 
            "givenName": "Quan", 
            "id": "sg:person.010715634713.86", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010715634713.86"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sericultural Research Institute", 
              "id": "https://www.grid.ac/institutes/grid.487615.9", 
              "name": [
                "Jiang Su University of Science and Technology, 212018, Zhenjiang, Jiangsu, People\u2019s Republic of China", 
                "The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, 212018, Zhenjiang, Jiangsu, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Sheng Peng", 
            "id": "sg:person.01131715671.58", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01131715671.58"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sericultural Research Institute", 
              "id": "https://www.grid.ac/institutes/grid.487615.9", 
              "name": [
                "Jiang Su University of Science and Technology, 212018, Zhenjiang, Jiangsu, People\u2019s Republic of China", 
                "The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, 212018, Zhenjiang, Jiangsu, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tang", 
            "givenName": "Shun Ming", 
            "id": "sg:person.0706123577.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0706123577.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sericultural Research Institute", 
              "id": "https://www.grid.ac/institutes/grid.487615.9", 
              "name": [
                "Jiang Su University of Science and Technology, 212018, Zhenjiang, Jiangsu, People\u2019s Republic of China", 
                "The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, 212018, Zhenjiang, Jiangsu, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zhang", 
            "givenName": "Guo Zheng", 
            "id": "sg:person.01266454725.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01266454725.19"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Sericultural Research Institute", 
              "id": "https://www.grid.ac/institutes/grid.487615.9", 
              "name": [
                "Jiang Su University of Science and Technology, 212018, Zhenjiang, Jiangsu, People\u2019s Republic of China", 
                "The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, 212018, Zhenjiang, Jiangsu, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shen", 
            "givenName": "Xing Jia", 
            "id": "sg:person.01163042127.29", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163042127.29"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nmeth843", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000089258", 
              "https://doi.org/10.1038/nmeth843"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth843", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000089258", 
              "https://doi.org/10.1038/nmeth843"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/0471142727.mb2604s72", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000486315"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkp145", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001051929"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1794", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001555431", 
              "https://doi.org/10.1038/ng1794"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1794", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001555431", 
              "https://doi.org/10.1038/ng1794"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ymeth.2007.09.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004675130"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ymeth.2007.09.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004675130"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.6593807", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004853234"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10528-009-9234-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007098401", 
              "https://doi.org/10.1007/s10528-009-9234-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10528-009-9234-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007098401", 
              "https://doi.org/10.1007/s10528-009-9234-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10528-009-9234-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007098401", 
              "https://doi.org/10.1007/s10528-009-9234-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkm368", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007228542"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1261/rna.5250604", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007405654"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nbt1394", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008181500", 
              "https://doi.org/10.1038/nbt1394"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1534-5807(03)00127-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009234569"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00018-007-7355-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009545476", 
              "https://doi.org/10.1007/s00018-007-7355-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1590", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009559117", 
              "https://doi.org/10.1038/ng1590"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng1590", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009559117", 
              "https://doi.org/10.1038/ng1590"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11010-009-0168-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009921426", 
              "https://doi.org/10.1007/s11010-009-0168-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11010-009-0168-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009921426", 
              "https://doi.org/10.1007/s11010-009-0168-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pgen.0040022", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010262489"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.tplants.2003.09.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010671608"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.tplants.2003.09.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010671608"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1534-5807(03)00124-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010834308"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1261/rna.1947110", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012500793"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0960-9822(02)00809-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012534253"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ymeth.2007.04.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014046554"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ymeth.2007.04.004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014046554"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkl068", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014608557"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1114519", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015845379"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.cell.2004.12.031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017459887"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00216-008-2570-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017958638", 
              "https://doi.org/10.1007/s00216-008-2570-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00216-008-2570-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017958638", 
              "https://doi.org/10.1007/s00216-008-2570-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0000946", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018234893"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.gde.2005.01.002", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019801368"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1261/rna.518107", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020190663"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-6-267", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020371378", 
              "https://doi.org/10.1186/1471-2105-6-267"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1748-7188-3-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020467073", 
              "https://doi.org/10.1186/1748-7188-3-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0002997", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020515776"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkl278", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021157357"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.2908205", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022383282"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btn175", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022489262"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1065062", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023084018"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2626", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023911485", 
              "https://doi.org/10.1038/nrg2626"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2626", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023911485", 
              "https://doi.org/10.1038/nrg2626"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0403293101", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024359349"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gad.1165404", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027583707"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1261/rna.5206304", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029363698"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.076463.108", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030225638"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1745-7270.2007.00324.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033892034"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.6597907", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034593507"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nprot.2007.530", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034818601", 
              "https://doi.org/10.1038/nprot.2007.530"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1261/rna.2326106", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037106315"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2003-5-1-r1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037433425", 
              "https://doi.org/10.1186/gb-2003-5-1-r1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1373/clinchem.2008.107565", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037869075"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1261/rna.2258506", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038878561"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btl570", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039633402"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s13105-010-0050-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040289905", 
              "https://doi.org/10.1007/s13105-010-0050-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1261/rna.110706", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040300156"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1098/rspb.1994.0040", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040469103"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btl257", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040565153"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1101/gr.7179508", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041320458"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jbi.2009.01.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042542425"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/gb-2003-4-7-r42", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042629402", 
              "https://doi.org/10.1186/gb-2003-4-7-r42"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-6-310", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042828030", 
              "https://doi.org/10.1186/1471-2105-6-310"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2105-6-310", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042828030", 
              "https://doi.org/10.1186/1471-2105-6-310"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s1097-2765(00)80245-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043427638"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1371/journal.pone.0011518", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045107657"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/bioinformatics/btl094", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045143618"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkp347", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045569968"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkm112", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045909688"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1261/rna.2148705", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045998708"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/dvdy.20847", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046047204"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35002607", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047689840", 
              "https://doi.org/10.1038/35002607"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35002607", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047689840", 
              "https://doi.org/10.1038/35002607"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gki668", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047985636"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ygeno.2008.07.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049637368"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nmeth1130", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050054539", 
              "https://doi.org/10.1038/nmeth1130"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0092-8674(93)90529-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051619915"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature07517", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052925719", 
              "https://doi.org/10.1038/nature07517"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1093/nar/gkq1027", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053382169"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1089/dna.2006.0546", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059252035"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1080372", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062447737"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1085242", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062448182"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1096781", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062449553"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2144/000112010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069095195"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1076829086", 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1077599332", 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2011-08", 
        "datePublishedReg": "2011-08-01", 
        "description": "MicroRNAs (miRNAs) are small, highly conserved, non-coding RNAs that regulate gene expression of target mRNAs through cleavage or translational inhibition. Computer-based approaches for miRNA gene identification are being considered as indispensable in miRNAs research. Similarly, experimental approaches for detection of miRNAs are crucial to the testing and validating of computational algorithms. The detection of miRNAs in tissues or cells can supply valuable information for investigating the biological function of these molecules. Selective and highly sensitive detection methods will pave the way for extended understanding of miRNA function within organisms. In this review, we summarize the various computational methods for identification of miRNAs as well as the methodologies that have been developed to detection miRNAs.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11033-010-0532-1", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.5017780", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1018503", 
            "issn": [
              "0301-4851", 
              "1573-4978"
            ], 
            "name": "Molecular Biology Reports", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "38"
          }
        ], 
        "name": "The discovery approaches and detection methods of microRNAs", 
        "pagination": "4125-4135", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "3f8b672d557472cd1bbb9379d98c8a6c827b760b017b17e97a35f0c019716568"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "21107708"
            ]
          }, 
          {
            "name": "nlm_unique_id", 
            "type": "PropertyValue", 
            "value": [
              "0403234"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11033-010-0532-1"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1013339307"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11033-010-0532-1", 
          "https://app.dimensions.ai/details/publication/pub.1013339307"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T10:03", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89824_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs11033-010-0532-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11033-010-0532-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11033-010-0532-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11033-010-0532-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11033-010-0532-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    379 TRIPLES      21 PREDICATES      111 URIs      27 LITERALS      15 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11033-010-0532-1 schema:about N1131f6d6f3b24a6b924eecbaebe44366
    2 N1a642d7a6ebe4652bc12abe68b072f79
    3 N5552220adce64bd68605ffc42a91ad32
    4 N72f8a1cf17734e99a684dbbb33e19a01
    5 N81bd2827435a4d4fbbbd0576ba05cbef
    6 Nf9f5ad67c3ef490aa09a486d91d0bf3b
    7 anzsrc-for:06
    8 anzsrc-for:0604
    9 schema:author N79e0945a3f5e4ad0afd4b93e54fc1aeb
    10 schema:citation sg:pub.10.1007/s00018-007-7355-9
    11 sg:pub.10.1007/s00216-008-2570-2
    12 sg:pub.10.1007/s10528-009-9234-6
    13 sg:pub.10.1007/s11010-009-0168-4
    14 sg:pub.10.1007/s13105-010-0050-6
    15 sg:pub.10.1038/35002607
    16 sg:pub.10.1038/nature07517
    17 sg:pub.10.1038/nbt1394
    18 sg:pub.10.1038/ng1590
    19 sg:pub.10.1038/ng1794
    20 sg:pub.10.1038/nmeth1130
    21 sg:pub.10.1038/nmeth843
    22 sg:pub.10.1038/nprot.2007.530
    23 sg:pub.10.1038/nrg2626
    24 sg:pub.10.1186/1471-2105-6-267
    25 sg:pub.10.1186/1471-2105-6-310
    26 sg:pub.10.1186/1748-7188-3-2
    27 sg:pub.10.1186/gb-2003-4-7-r42
    28 sg:pub.10.1186/gb-2003-5-1-r1
    29 https://app.dimensions.ai/details/publication/pub.1076829086
    30 https://app.dimensions.ai/details/publication/pub.1077599332
    31 https://doi.org/10.1002/0471142727.mb2604s72
    32 https://doi.org/10.1002/dvdy.20847
    33 https://doi.org/10.1016/0092-8674(93)90529-y
    34 https://doi.org/10.1016/j.cell.2004.12.031
    35 https://doi.org/10.1016/j.gde.2005.01.002
    36 https://doi.org/10.1016/j.jbi.2009.01.005
    37 https://doi.org/10.1016/j.tplants.2003.09.002
    38 https://doi.org/10.1016/j.ygeno.2008.07.001
    39 https://doi.org/10.1016/j.ymeth.2007.04.004
    40 https://doi.org/10.1016/j.ymeth.2007.09.006
    41 https://doi.org/10.1016/s0960-9822(02)00809-6
    42 https://doi.org/10.1016/s1097-2765(00)80245-2
    43 https://doi.org/10.1016/s1534-5807(03)00124-2
    44 https://doi.org/10.1016/s1534-5807(03)00127-8
    45 https://doi.org/10.1073/pnas.0403293101
    46 https://doi.org/10.1089/dna.2006.0546
    47 https://doi.org/10.1093/bioinformatics/btl094
    48 https://doi.org/10.1093/bioinformatics/btl257
    49 https://doi.org/10.1093/bioinformatics/btl570
    50 https://doi.org/10.1093/bioinformatics/btn175
    51 https://doi.org/10.1093/nar/gki668
    52 https://doi.org/10.1093/nar/gkl068
    53 https://doi.org/10.1093/nar/gkl278
    54 https://doi.org/10.1093/nar/gkm112
    55 https://doi.org/10.1093/nar/gkm368
    56 https://doi.org/10.1093/nar/gkp145
    57 https://doi.org/10.1093/nar/gkp347
    58 https://doi.org/10.1093/nar/gkq1027
    59 https://doi.org/10.1098/rspb.1994.0040
    60 https://doi.org/10.1101/gad.1165404
    61 https://doi.org/10.1101/gr.076463.108
    62 https://doi.org/10.1101/gr.2908205
    63 https://doi.org/10.1101/gr.6593807
    64 https://doi.org/10.1101/gr.6597907
    65 https://doi.org/10.1101/gr.7179508
    66 https://doi.org/10.1111/j.1745-7270.2007.00324.x
    67 https://doi.org/10.1126/science.1065062
    68 https://doi.org/10.1126/science.1080372
    69 https://doi.org/10.1126/science.1085242
    70 https://doi.org/10.1126/science.1096781
    71 https://doi.org/10.1126/science.1114519
    72 https://doi.org/10.1261/rna.110706
    73 https://doi.org/10.1261/rna.1947110
    74 https://doi.org/10.1261/rna.2148705
    75 https://doi.org/10.1261/rna.2258506
    76 https://doi.org/10.1261/rna.2326106
    77 https://doi.org/10.1261/rna.518107
    78 https://doi.org/10.1261/rna.5206304
    79 https://doi.org/10.1261/rna.5250604
    80 https://doi.org/10.1371/journal.pgen.0040022
    81 https://doi.org/10.1371/journal.pone.0000946
    82 https://doi.org/10.1371/journal.pone.0002997
    83 https://doi.org/10.1371/journal.pone.0011518
    84 https://doi.org/10.1373/clinchem.2008.107565
    85 https://doi.org/10.2144/000112010
    86 schema:datePublished 2011-08
    87 schema:datePublishedReg 2011-08-01
    88 schema:description MicroRNAs (miRNAs) are small, highly conserved, non-coding RNAs that regulate gene expression of target mRNAs through cleavage or translational inhibition. Computer-based approaches for miRNA gene identification are being considered as indispensable in miRNAs research. Similarly, experimental approaches for detection of miRNAs are crucial to the testing and validating of computational algorithms. The detection of miRNAs in tissues or cells can supply valuable information for investigating the biological function of these molecules. Selective and highly sensitive detection methods will pave the way for extended understanding of miRNA function within organisms. In this review, we summarize the various computational methods for identification of miRNAs as well as the methodologies that have been developed to detection miRNAs.
    89 schema:genre research_article
    90 schema:inLanguage en
    91 schema:isAccessibleForFree false
    92 schema:isPartOf N0dc2eebfe0b549e0bd5c652b5a8cf627
    93 Nfad8b330289340358542b9c765b97342
    94 sg:journal.1018503
    95 schema:name The discovery approaches and detection methods of microRNAs
    96 schema:pagination 4125-4135
    97 schema:productId N4ca86b44fb7a4625b9ebc34e7e7f57f3
    98 N735747309fdf45eeaa247f3f062dd5cb
    99 N892758e1562a42deb918c40375efddef
    100 Nbc263b27d6ad4129850406a28d992d0c
    101 Nfbff484b50b84bc697a526899d06853b
    102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013339307
    103 https://doi.org/10.1007/s11033-010-0532-1
    104 schema:sdDatePublished 2019-04-11T10:03
    105 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    106 schema:sdPublisher N866c6c2178c44191a42e8fde7a2ee426
    107 schema:url https://link.springer.com/10.1007%2Fs11033-010-0532-1
    108 sgo:license sg:explorer/license/
    109 sgo:sdDataset articles
    110 rdf:type schema:ScholarlyArticle
    111 N0dc2eebfe0b549e0bd5c652b5a8cf627 schema:issueNumber 6
    112 rdf:type schema:PublicationIssue
    113 N1131f6d6f3b24a6b924eecbaebe44366 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    114 schema:name Sequence Analysis, RNA
    115 rdf:type schema:DefinedTerm
    116 N1a642d7a6ebe4652bc12abe68b072f79 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    117 schema:name Animals
    118 rdf:type schema:DefinedTerm
    119 N1e2de1003b9d4592b18d1a273a44b7de rdf:first sg:person.0706123577.10
    120 rdf:rest N74ed27da15d642478b278d1bb480d557
    121 N4ca86b44fb7a4625b9ebc34e7e7f57f3 schema:name readcube_id
    122 schema:value 3f8b672d557472cd1bbb9379d98c8a6c827b760b017b17e97a35f0c019716568
    123 rdf:type schema:PropertyValue
    124 N5552220adce64bd68605ffc42a91ad32 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    125 schema:name Computational Biology
    126 rdf:type schema:DefinedTerm
    127 N72f8a1cf17734e99a684dbbb33e19a01 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    128 schema:name MicroRNAs
    129 rdf:type schema:DefinedTerm
    130 N735747309fdf45eeaa247f3f062dd5cb schema:name pubmed_id
    131 schema:value 21107708
    132 rdf:type schema:PropertyValue
    133 N74ed27da15d642478b278d1bb480d557 rdf:first sg:person.01266454725.19
    134 rdf:rest Na42773371c374253958da249498dc77f
    135 N79e0945a3f5e4ad0afd4b93e54fc1aeb rdf:first sg:person.01031113006.74
    136 rdf:rest Ne0357b1fbbf047de97a18975e5eb3eb3
    137 N81bd2827435a4d4fbbbd0576ba05cbef schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    138 schema:name Reverse Transcriptase Polymerase Chain Reaction
    139 rdf:type schema:DefinedTerm
    140 N866c6c2178c44191a42e8fde7a2ee426 schema:name Springer Nature - SN SciGraph project
    141 rdf:type schema:Organization
    142 N892758e1562a42deb918c40375efddef schema:name doi
    143 schema:value 10.1007/s11033-010-0532-1
    144 rdf:type schema:PropertyValue
    145 Na42773371c374253958da249498dc77f rdf:first sg:person.01163042127.29
    146 rdf:rest rdf:nil
    147 Nbc263b27d6ad4129850406a28d992d0c schema:name nlm_unique_id
    148 schema:value 0403234
    149 rdf:type schema:PropertyValue
    150 Ne0357b1fbbf047de97a18975e5eb3eb3 rdf:first sg:person.010715634713.86
    151 rdf:rest Nee38b1f2fa654619bd81b82c928c9bb2
    152 Nee38b1f2fa654619bd81b82c928c9bb2 rdf:first sg:person.01131715671.58
    153 rdf:rest N1e2de1003b9d4592b18d1a273a44b7de
    154 Nf9f5ad67c3ef490aa09a486d91d0bf3b schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    155 schema:name Humans
    156 rdf:type schema:DefinedTerm
    157 Nfad8b330289340358542b9c765b97342 schema:volumeNumber 38
    158 rdf:type schema:PublicationVolume
    159 Nfbff484b50b84bc697a526899d06853b schema:name dimensions_id
    160 schema:value pub.1013339307
    161 rdf:type schema:PropertyValue
    162 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    163 schema:name Biological Sciences
    164 rdf:type schema:DefinedTerm
    165 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    166 schema:name Genetics
    167 rdf:type schema:DefinedTerm
    168 sg:grant.5017780 http://pending.schema.org/fundedItem sg:pub.10.1007/s11033-010-0532-1
    169 rdf:type schema:MonetaryGrant
    170 sg:journal.1018503 schema:issn 0301-4851
    171 1573-4978
    172 schema:name Molecular Biology Reports
    173 rdf:type schema:Periodical
    174 sg:person.01031113006.74 schema:affiliation https://www.grid.ac/institutes/grid.487615.9
    175 schema:familyName Huang
    176 schema:givenName Yong
    177 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01031113006.74
    178 rdf:type schema:Person
    179 sg:person.010715634713.86 schema:affiliation https://www.grid.ac/institutes/grid.12955.3a
    180 schema:familyName Zou
    181 schema:givenName Quan
    182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010715634713.86
    183 rdf:type schema:Person
    184 sg:person.01131715671.58 schema:affiliation https://www.grid.ac/institutes/grid.487615.9
    185 schema:familyName Wang
    186 schema:givenName Sheng Peng
    187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01131715671.58
    188 rdf:type schema:Person
    189 sg:person.01163042127.29 schema:affiliation https://www.grid.ac/institutes/grid.487615.9
    190 schema:familyName Shen
    191 schema:givenName Xing Jia
    192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01163042127.29
    193 rdf:type schema:Person
    194 sg:person.01266454725.19 schema:affiliation https://www.grid.ac/institutes/grid.487615.9
    195 schema:familyName Zhang
    196 schema:givenName Guo Zheng
    197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01266454725.19
    198 rdf:type schema:Person
    199 sg:person.0706123577.10 schema:affiliation https://www.grid.ac/institutes/grid.487615.9
    200 schema:familyName Tang
    201 schema:givenName Shun Ming
    202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0706123577.10
    203 rdf:type schema:Person
    204 sg:pub.10.1007/s00018-007-7355-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009545476
    205 https://doi.org/10.1007/s00018-007-7355-9
    206 rdf:type schema:CreativeWork
    207 sg:pub.10.1007/s00216-008-2570-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017958638
    208 https://doi.org/10.1007/s00216-008-2570-2
    209 rdf:type schema:CreativeWork
    210 sg:pub.10.1007/s10528-009-9234-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007098401
    211 https://doi.org/10.1007/s10528-009-9234-6
    212 rdf:type schema:CreativeWork
    213 sg:pub.10.1007/s11010-009-0168-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009921426
    214 https://doi.org/10.1007/s11010-009-0168-4
    215 rdf:type schema:CreativeWork
    216 sg:pub.10.1007/s13105-010-0050-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040289905
    217 https://doi.org/10.1007/s13105-010-0050-6
    218 rdf:type schema:CreativeWork
    219 sg:pub.10.1038/35002607 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047689840
    220 https://doi.org/10.1038/35002607
    221 rdf:type schema:CreativeWork
    222 sg:pub.10.1038/nature07517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052925719
    223 https://doi.org/10.1038/nature07517
    224 rdf:type schema:CreativeWork
    225 sg:pub.10.1038/nbt1394 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008181500
    226 https://doi.org/10.1038/nbt1394
    227 rdf:type schema:CreativeWork
    228 sg:pub.10.1038/ng1590 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009559117
    229 https://doi.org/10.1038/ng1590
    230 rdf:type schema:CreativeWork
    231 sg:pub.10.1038/ng1794 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001555431
    232 https://doi.org/10.1038/ng1794
    233 rdf:type schema:CreativeWork
    234 sg:pub.10.1038/nmeth1130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050054539
    235 https://doi.org/10.1038/nmeth1130
    236 rdf:type schema:CreativeWork
    237 sg:pub.10.1038/nmeth843 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000089258
    238 https://doi.org/10.1038/nmeth843
    239 rdf:type schema:CreativeWork
    240 sg:pub.10.1038/nprot.2007.530 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034818601
    241 https://doi.org/10.1038/nprot.2007.530
    242 rdf:type schema:CreativeWork
    243 sg:pub.10.1038/nrg2626 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023911485
    244 https://doi.org/10.1038/nrg2626
    245 rdf:type schema:CreativeWork
    246 sg:pub.10.1186/1471-2105-6-267 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020371378
    247 https://doi.org/10.1186/1471-2105-6-267
    248 rdf:type schema:CreativeWork
    249 sg:pub.10.1186/1471-2105-6-310 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042828030
    250 https://doi.org/10.1186/1471-2105-6-310
    251 rdf:type schema:CreativeWork
    252 sg:pub.10.1186/1748-7188-3-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020467073
    253 https://doi.org/10.1186/1748-7188-3-2
    254 rdf:type schema:CreativeWork
    255 sg:pub.10.1186/gb-2003-4-7-r42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042629402
    256 https://doi.org/10.1186/gb-2003-4-7-r42
    257 rdf:type schema:CreativeWork
    258 sg:pub.10.1186/gb-2003-5-1-r1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037433425
    259 https://doi.org/10.1186/gb-2003-5-1-r1
    260 rdf:type schema:CreativeWork
    261 https://app.dimensions.ai/details/publication/pub.1076829086 schema:CreativeWork
    262 https://app.dimensions.ai/details/publication/pub.1077599332 schema:CreativeWork
    263 https://doi.org/10.1002/0471142727.mb2604s72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000486315
    264 rdf:type schema:CreativeWork
    265 https://doi.org/10.1002/dvdy.20847 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046047204
    266 rdf:type schema:CreativeWork
    267 https://doi.org/10.1016/0092-8674(93)90529-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1051619915
    268 rdf:type schema:CreativeWork
    269 https://doi.org/10.1016/j.cell.2004.12.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017459887
    270 rdf:type schema:CreativeWork
    271 https://doi.org/10.1016/j.gde.2005.01.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019801368
    272 rdf:type schema:CreativeWork
    273 https://doi.org/10.1016/j.jbi.2009.01.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042542425
    274 rdf:type schema:CreativeWork
    275 https://doi.org/10.1016/j.tplants.2003.09.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010671608
    276 rdf:type schema:CreativeWork
    277 https://doi.org/10.1016/j.ygeno.2008.07.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049637368
    278 rdf:type schema:CreativeWork
    279 https://doi.org/10.1016/j.ymeth.2007.04.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014046554
    280 rdf:type schema:CreativeWork
    281 https://doi.org/10.1016/j.ymeth.2007.09.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004675130
    282 rdf:type schema:CreativeWork
    283 https://doi.org/10.1016/s0960-9822(02)00809-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012534253
    284 rdf:type schema:CreativeWork
    285 https://doi.org/10.1016/s1097-2765(00)80245-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043427638
    286 rdf:type schema:CreativeWork
    287 https://doi.org/10.1016/s1534-5807(03)00124-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010834308
    288 rdf:type schema:CreativeWork
    289 https://doi.org/10.1016/s1534-5807(03)00127-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009234569
    290 rdf:type schema:CreativeWork
    291 https://doi.org/10.1073/pnas.0403293101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024359349
    292 rdf:type schema:CreativeWork
    293 https://doi.org/10.1089/dna.2006.0546 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059252035
    294 rdf:type schema:CreativeWork
    295 https://doi.org/10.1093/bioinformatics/btl094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045143618
    296 rdf:type schema:CreativeWork
    297 https://doi.org/10.1093/bioinformatics/btl257 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040565153
    298 rdf:type schema:CreativeWork
    299 https://doi.org/10.1093/bioinformatics/btl570 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039633402
    300 rdf:type schema:CreativeWork
    301 https://doi.org/10.1093/bioinformatics/btn175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022489262
    302 rdf:type schema:CreativeWork
    303 https://doi.org/10.1093/nar/gki668 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047985636
    304 rdf:type schema:CreativeWork
    305 https://doi.org/10.1093/nar/gkl068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014608557
    306 rdf:type schema:CreativeWork
    307 https://doi.org/10.1093/nar/gkl278 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021157357
    308 rdf:type schema:CreativeWork
    309 https://doi.org/10.1093/nar/gkm112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045909688
    310 rdf:type schema:CreativeWork
    311 https://doi.org/10.1093/nar/gkm368 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007228542
    312 rdf:type schema:CreativeWork
    313 https://doi.org/10.1093/nar/gkp145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001051929
    314 rdf:type schema:CreativeWork
    315 https://doi.org/10.1093/nar/gkp347 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045569968
    316 rdf:type schema:CreativeWork
    317 https://doi.org/10.1093/nar/gkq1027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053382169
    318 rdf:type schema:CreativeWork
    319 https://doi.org/10.1098/rspb.1994.0040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040469103
    320 rdf:type schema:CreativeWork
    321 https://doi.org/10.1101/gad.1165404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027583707
    322 rdf:type schema:CreativeWork
    323 https://doi.org/10.1101/gr.076463.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030225638
    324 rdf:type schema:CreativeWork
    325 https://doi.org/10.1101/gr.2908205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022383282
    326 rdf:type schema:CreativeWork
    327 https://doi.org/10.1101/gr.6593807 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004853234
    328 rdf:type schema:CreativeWork
    329 https://doi.org/10.1101/gr.6597907 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034593507
    330 rdf:type schema:CreativeWork
    331 https://doi.org/10.1101/gr.7179508 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041320458
    332 rdf:type schema:CreativeWork
    333 https://doi.org/10.1111/j.1745-7270.2007.00324.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1033892034
    334 rdf:type schema:CreativeWork
    335 https://doi.org/10.1126/science.1065062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023084018
    336 rdf:type schema:CreativeWork
    337 https://doi.org/10.1126/science.1080372 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062447737
    338 rdf:type schema:CreativeWork
    339 https://doi.org/10.1126/science.1085242 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062448182
    340 rdf:type schema:CreativeWork
    341 https://doi.org/10.1126/science.1096781 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062449553
    342 rdf:type schema:CreativeWork
    343 https://doi.org/10.1126/science.1114519 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015845379
    344 rdf:type schema:CreativeWork
    345 https://doi.org/10.1261/rna.110706 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040300156
    346 rdf:type schema:CreativeWork
    347 https://doi.org/10.1261/rna.1947110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012500793
    348 rdf:type schema:CreativeWork
    349 https://doi.org/10.1261/rna.2148705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045998708
    350 rdf:type schema:CreativeWork
    351 https://doi.org/10.1261/rna.2258506 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038878561
    352 rdf:type schema:CreativeWork
    353 https://doi.org/10.1261/rna.2326106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037106315
    354 rdf:type schema:CreativeWork
    355 https://doi.org/10.1261/rna.518107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020190663
    356 rdf:type schema:CreativeWork
    357 https://doi.org/10.1261/rna.5206304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029363698
    358 rdf:type schema:CreativeWork
    359 https://doi.org/10.1261/rna.5250604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007405654
    360 rdf:type schema:CreativeWork
    361 https://doi.org/10.1371/journal.pgen.0040022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010262489
    362 rdf:type schema:CreativeWork
    363 https://doi.org/10.1371/journal.pone.0000946 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018234893
    364 rdf:type schema:CreativeWork
    365 https://doi.org/10.1371/journal.pone.0002997 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020515776
    366 rdf:type schema:CreativeWork
    367 https://doi.org/10.1371/journal.pone.0011518 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045107657
    368 rdf:type schema:CreativeWork
    369 https://doi.org/10.1373/clinchem.2008.107565 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037869075
    370 rdf:type schema:CreativeWork
    371 https://doi.org/10.2144/000112010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069095195
    372 rdf:type schema:CreativeWork
    373 https://www.grid.ac/institutes/grid.12955.3a schema:alternateName Xiamen University
    374 schema:name School of Information Science and Technology of Xiamen University, 361005, Xiamen, Fujian, People’s Republic of China
    375 rdf:type schema:Organization
    376 https://www.grid.ac/institutes/grid.487615.9 schema:alternateName Sericultural Research Institute
    377 schema:name Jiang Su University of Science and Technology, 212018, Zhenjiang, Jiangsu, People’s Republic of China
    378 The Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, 212018, Zhenjiang, Jiangsu, People’s Republic of China
    379 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...