Pooled mapping: an efficient method of calling variations for population samples with low-depth resequencing data View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-04

AUTHORS

Lixia Fu, Chengcheng Cai, Yinan Cui, Jian Wu, Jianli Liang, Feng Cheng, Xiaowu Wang

ABSTRACT

Whole-genome resequencing (WGR) is a high-throughput way to determine genomic variations in breeding-related research. Accuracy and sensitivity are two of the most important issues in variation calling of WGR, especially for samples with low-depth resequencing data, which are used to reduce cost and save time in studies as survey of core germplasms from natural populations or genome-based breeding selection in segregation populations. An approach called pooled mapping was developed to call variations from low-depth resequencing data of natural or segregation populations. It is highly accurate and sensitive. First, pooled mapping creates a library of confident polymorphic loci in genomes of the population; then, the genotypes are called out at these confident loci for each sample in an efficient manner. The reliability of this pooled mapping method was confirmed using simulated datasets, real resequencing data and experimental genotyping. With onefold simulated resequencing data, results showed that pooled mapping identified SNPs in high accuracy (99.59 %) and sensitivity (93 %), compared to the commonly used method (accuracy: 29 %; sensitivity: 56 %). For the real low-depth resequencing data (≈0.8×) of 281 B. oleracea accessions, four loci corresponding to 1063 sites were selected for KASP genotyping to confirm the performance of pooled mapping. We found for all the 875 homozygous sites analyzed, pooled mapping achieved accuracy as 98.24 % and a sensitivity as 90.97 %. In conclusion, pooled mapping is an efficient means of determining reliable genomic variations with limited resequencing data for population samples. It will be a valuable tool in population genomic analysis and genome-based breeding research. More... »

PAGES

48

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11032-016-0476-9

DOI

http://dx.doi.org/10.1007/s11032-016-0476-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1049774120


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Vegetables and Flowers", 
          "id": "https://www.grid.ac/institutes/grid.464357.7", 
          "name": [
            "Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun, Nandajie No. 12, Haidian District, 100081, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fu", 
        "givenName": "Lixia", 
        "id": "sg:person.016602712035.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016602712035.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Vegetables and Flowers", 
          "id": "https://www.grid.ac/institutes/grid.464357.7", 
          "name": [
            "Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun, Nandajie No. 12, Haidian District, 100081, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cai", 
        "givenName": "Chengcheng", 
        "id": "sg:person.0612155067.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0612155067.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Vegetables and Flowers", 
          "id": "https://www.grid.ac/institutes/grid.464357.7", 
          "name": [
            "Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun, Nandajie No. 12, Haidian District, 100081, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cui", 
        "givenName": "Yinan", 
        "id": "sg:person.013644661641.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013644661641.61"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Vegetables and Flowers", 
          "id": "https://www.grid.ac/institutes/grid.464357.7", 
          "name": [
            "Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun, Nandajie No. 12, Haidian District, 100081, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wu", 
        "givenName": "Jian", 
        "id": "sg:person.01076440533.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01076440533.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Vegetables and Flowers", 
          "id": "https://www.grid.ac/institutes/grid.464357.7", 
          "name": [
            "Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun, Nandajie No. 12, Haidian District, 100081, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liang", 
        "givenName": "Jianli", 
        "id": "sg:person.01144553733.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144553733.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Vegetables and Flowers", 
          "id": "https://www.grid.ac/institutes/grid.464357.7", 
          "name": [
            "Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun, Nandajie No. 12, Haidian District, 100081, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cheng", 
        "givenName": "Feng", 
        "id": "sg:person.01334414011.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01334414011.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Vegetables and Flowers", 
          "id": "https://www.grid.ac/institutes/grid.464357.7", 
          "name": [
            "Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun, Nandajie No. 12, Haidian District, 100081, Beijing, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "Xiaowu", 
        "id": "sg:person.01111134275.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111134275.07"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1073/pnas.151244298", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001425614"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9781118473023.ch10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002299348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature10158", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002525491", 
          "https://doi.org/10.1038/nature10158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0888-7543(89)90129-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002919474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1104/pp.108.126375", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003179551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2164-13-341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003392841", 
          "https://doi.org/10.1186/1471-2164-13-341"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms4930", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005748112", 
          "https://doi.org/10.1038/ncomms4930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11032-015-0240-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006608566", 
          "https://doi.org/10.1007/s11032-015-0240-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0092-8674(79)90200-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006967649"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1297-9686-42-12", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007601828", 
          "https://doi.org/10.1186/1297-9686-42-12"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1471-2148-10-98", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008303520", 
          "https://doi.org/10.1186/1471-2148-10-98"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.695", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009890914", 
          "https://doi.org/10.1038/ng.695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.695", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009890914", 
          "https://doi.org/10.1038/ng.695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.copbio.2012.09.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010102345"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/22.21.4527", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010118065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp698", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012031985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02772892", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013367726", 
          "https://doi.org/10.1007/bf02772892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00606-004-0293-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013421660", 
          "https://doi.org/10.1007/s00606-004-0293-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00606-004-0293-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013421660", 
          "https://doi.org/10.1007/s00606-004-0293-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/322652a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015060706", 
          "https://doi.org/10.1038/322652a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/g05-044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015351735"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08670", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017534919", 
          "https://doi.org/10.1038/nature08670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature08670", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017534919", 
          "https://doi.org/10.1038/nature08670"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tibtech.2009.05.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018973914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1068275", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020691036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-7652.2009.00406.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021188397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1467-7652.2009.00406.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021188397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11032-015-0202-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022005710", 
          "https://doi.org/10.1007/s11032-015-0202-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/18.22.6531", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022940325"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp352", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023014918"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp379", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023909949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2626", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023911485", 
          "https://doi.org/10.1038/nrg2626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg2626", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023911485", 
          "https://doi.org/10.1038/nrg2626"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12284-009-9025-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024460736", 
          "https://doi.org/10.1007/s12284-009-9025-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12284-009-9025-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024460736", 
          "https://doi.org/10.1007/s12284-009-9025-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00299-008-0507-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025775650", 
          "https://doi.org/10.1007/s00299-008-0507-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00299-008-0507-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025775650", 
          "https://doi.org/10.1007/s00299-008-0507-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00299-008-0507-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025775650", 
          "https://doi.org/10.1007/s00299-008-0507-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.089516.108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026616147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11032-013-9869-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030379311", 
          "https://doi.org/10.1007/s11032-013-9869-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrg3012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034382223", 
          "https://doi.org/10.1038/nrg3012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1297-9686-34-3-275", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035399200", 
          "https://doi.org/10.1186/1297-9686-34-3-275"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ng.919", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035519342", 
          "https://doi.org/10.1038/ng.919"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1139/g06-067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036255247"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btp324", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038266369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature11798", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038528047", 
          "https://doi.org/10.1038/nature11798"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1009651919792", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038777471", 
          "https://doi.org/10.1023/a:1009651919792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00215038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041427615", 
          "https://doi.org/10.1007/bf00215038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00215038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041427615", 
          "https://doi.org/10.1007/bf00215038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1014875206165", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044165706", 
          "https://doi.org/10.1023/a:1014875206165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10681-012-0643-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045414126", 
          "https://doi.org/10.1007/s10681-012-0643-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00564200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045883721", 
          "https://doi.org/10.1007/bf00564200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00564200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045883721", 
          "https://doi.org/10.1007/bf00564200"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature11119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047486795", 
          "https://doi.org/10.1038/nature11119"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btm220", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048339526"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature11997", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050820070", 
          "https://doi.org/10.1038/nature11997"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.surg.2012.07.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052021011"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msp188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052429020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/molbev/msp188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052429020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/sqb.1974.039.01.056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060404449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1178534", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062460510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.3051381", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062586161"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1075259844", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1081643579", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471687545", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109700873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471687545", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109700873"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-04", 
    "datePublishedReg": "2016-04-01", 
    "description": "Whole-genome resequencing (WGR) is a high-throughput way to determine genomic variations in breeding-related research. Accuracy and sensitivity are two of the most important issues in variation calling of WGR, especially for samples with low-depth resequencing data, which are used to reduce cost and save time in studies as survey of core germplasms from natural populations or genome-based breeding selection in segregation populations. An approach called pooled mapping was developed to call variations from low-depth resequencing data of natural or segregation populations. It is highly accurate and sensitive. First, pooled mapping creates a library of confident polymorphic loci in genomes of the population; then, the genotypes are called out at these confident loci for each sample in an efficient manner. The reliability of this pooled mapping method was confirmed using simulated datasets, real resequencing data and experimental genotyping. With onefold simulated resequencing data, results showed that pooled mapping identified SNPs in high accuracy (99.59 %) and sensitivity (93 %), compared to the commonly used method (accuracy: 29 %; sensitivity: 56 %). For the real low-depth resequencing data (\u22480.8\u00d7) of 281 B. oleracea accessions, four loci corresponding to 1063 sites were selected for KASP genotyping to confirm the performance of pooled mapping. We found for all the 875 homozygous sites analyzed, pooled mapping achieved accuracy as 98.24 % and a sensitivity as 90.97 %. In conclusion, pooled mapping is an efficient means of determining reliable genomic variations with limited resequencing data for population samples. It will be a valuable tool in population genomic analysis and genome-based breeding research.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11032-016-0476-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.7176762", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1114043", 
        "issn": [
          "1380-3743", 
          "1572-9788"
        ], 
        "name": "Molecular Breeding", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "36"
      }
    ], 
    "name": "Pooled mapping: an efficient method of calling variations for population samples with low-depth resequencing data", 
    "pagination": "48", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ed1be5d9f217c998419b9e941236bc85621d6b5fc679f4fb1db571421ecf8495"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11032-016-0476-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1049774120"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11032-016-0476-9", 
      "https://app.dimensions.ai/details/publication/pub.1049774120"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000516.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11032-016-0476-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11032-016-0476-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11032-016-0476-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11032-016-0476-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11032-016-0476-9'


 

This table displays all metadata directly associated to this object as RDF triples.

292 TRIPLES      21 PREDICATES      81 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11032-016-0476-9 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author N3e348d4717ed4468b44918d32e1e04c3
4 schema:citation sg:pub.10.1007/bf00215038
5 sg:pub.10.1007/bf00564200
6 sg:pub.10.1007/bf02772892
7 sg:pub.10.1007/s00299-008-0507-z
8 sg:pub.10.1007/s00606-004-0293-1
9 sg:pub.10.1007/s10681-012-0643-y
10 sg:pub.10.1007/s11032-013-9869-1
11 sg:pub.10.1007/s11032-015-0202-z
12 sg:pub.10.1007/s11032-015-0240-6
13 sg:pub.10.1007/s12284-009-9025-z
14 sg:pub.10.1023/a:1009651919792
15 sg:pub.10.1023/a:1014875206165
16 sg:pub.10.1038/322652a0
17 sg:pub.10.1038/nature08670
18 sg:pub.10.1038/nature10158
19 sg:pub.10.1038/nature11119
20 sg:pub.10.1038/nature11798
21 sg:pub.10.1038/nature11997
22 sg:pub.10.1038/ncomms4930
23 sg:pub.10.1038/ng.695
24 sg:pub.10.1038/ng.919
25 sg:pub.10.1038/nrg2626
26 sg:pub.10.1038/nrg3012
27 sg:pub.10.1186/1297-9686-34-3-275
28 sg:pub.10.1186/1297-9686-42-12
29 sg:pub.10.1186/1471-2148-10-98
30 sg:pub.10.1186/1471-2164-13-341
31 https://app.dimensions.ai/details/publication/pub.1075259844
32 https://app.dimensions.ai/details/publication/pub.1081643579
33 https://doi.org/10.1002/0471687545
34 https://doi.org/10.1002/9781118473023.ch10
35 https://doi.org/10.1016/0092-8674(79)90200-9
36 https://doi.org/10.1016/0888-7543(89)90129-8
37 https://doi.org/10.1016/j.copbio.2012.09.004
38 https://doi.org/10.1016/j.surg.2012.07.023
39 https://doi.org/10.1016/j.tibtech.2009.05.006
40 https://doi.org/10.1073/pnas.151244298
41 https://doi.org/10.1093/bioinformatics/btm220
42 https://doi.org/10.1093/bioinformatics/btp324
43 https://doi.org/10.1093/bioinformatics/btp352
44 https://doi.org/10.1093/bioinformatics/btp379
45 https://doi.org/10.1093/bioinformatics/btp698
46 https://doi.org/10.1093/molbev/msp188
47 https://doi.org/10.1093/nar/18.22.6531
48 https://doi.org/10.1093/nar/22.21.4527
49 https://doi.org/10.1101/gr.089516.108
50 https://doi.org/10.1101/sqb.1974.039.01.056
51 https://doi.org/10.1104/pp.108.126375
52 https://doi.org/10.1111/j.1467-7652.2009.00406.x
53 https://doi.org/10.1126/science.1068275
54 https://doi.org/10.1126/science.1178534
55 https://doi.org/10.1126/science.3051381
56 https://doi.org/10.1139/g05-044
57 https://doi.org/10.1139/g06-067
58 schema:datePublished 2016-04
59 schema:datePublishedReg 2016-04-01
60 schema:description Whole-genome resequencing (WGR) is a high-throughput way to determine genomic variations in breeding-related research. Accuracy and sensitivity are two of the most important issues in variation calling of WGR, especially for samples with low-depth resequencing data, which are used to reduce cost and save time in studies as survey of core germplasms from natural populations or genome-based breeding selection in segregation populations. An approach called pooled mapping was developed to call variations from low-depth resequencing data of natural or segregation populations. It is highly accurate and sensitive. First, pooled mapping creates a library of confident polymorphic loci in genomes of the population; then, the genotypes are called out at these confident loci for each sample in an efficient manner. The reliability of this pooled mapping method was confirmed using simulated datasets, real resequencing data and experimental genotyping. With onefold simulated resequencing data, results showed that pooled mapping identified SNPs in high accuracy (99.59 %) and sensitivity (93 %), compared to the commonly used method (accuracy: 29 %; sensitivity: 56 %). For the real low-depth resequencing data (≈0.8×) of 281 B. oleracea accessions, four loci corresponding to 1063 sites were selected for KASP genotyping to confirm the performance of pooled mapping. We found for all the 875 homozygous sites analyzed, pooled mapping achieved accuracy as 98.24 % and a sensitivity as 90.97 %. In conclusion, pooled mapping is an efficient means of determining reliable genomic variations with limited resequencing data for population samples. It will be a valuable tool in population genomic analysis and genome-based breeding research.
61 schema:genre research_article
62 schema:inLanguage en
63 schema:isAccessibleForFree false
64 schema:isPartOf N271b92d9657b46b5bb1c740c9e27461d
65 N31bdbf0fbe7c4d12927c9e758f32727f
66 sg:journal.1114043
67 schema:name Pooled mapping: an efficient method of calling variations for population samples with low-depth resequencing data
68 schema:pagination 48
69 schema:productId N2ec7115da761491f9c77afac5bc9654e
70 Nc310f8ff50224f2e8e49086b73a97a53
71 Nf693046119d9423c80c07e73857aaf35
72 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049774120
73 https://doi.org/10.1007/s11032-016-0476-9
74 schema:sdDatePublished 2019-04-11T00:17
75 schema:sdLicense https://scigraph.springernature.com/explorer/license/
76 schema:sdPublisher N7a2d4f856b324e98ae12dc84daa5ec78
77 schema:url http://link.springer.com/10.1007%2Fs11032-016-0476-9
78 sgo:license sg:explorer/license/
79 sgo:sdDataset articles
80 rdf:type schema:ScholarlyArticle
81 N1843897ef2444e658e8dffe70487bc70 rdf:first sg:person.013644661641.61
82 rdf:rest N8ada308f3bb145bfb1dba4900e9fc9c4
83 N271b92d9657b46b5bb1c740c9e27461d schema:volumeNumber 36
84 rdf:type schema:PublicationVolume
85 N2ec7115da761491f9c77afac5bc9654e schema:name readcube_id
86 schema:value ed1be5d9f217c998419b9e941236bc85621d6b5fc679f4fb1db571421ecf8495
87 rdf:type schema:PropertyValue
88 N31bdbf0fbe7c4d12927c9e758f32727f schema:issueNumber 4
89 rdf:type schema:PublicationIssue
90 N3e348d4717ed4468b44918d32e1e04c3 rdf:first sg:person.016602712035.28
91 rdf:rest N68b1198a083849518258c6624e1be985
92 N68b1198a083849518258c6624e1be985 rdf:first sg:person.0612155067.07
93 rdf:rest N1843897ef2444e658e8dffe70487bc70
94 N78f0beababe141d097a7b3edf93ea416 rdf:first sg:person.01144553733.83
95 rdf:rest Nf436cd1419d6439e95fa4585ab910cd1
96 N7a2d4f856b324e98ae12dc84daa5ec78 schema:name Springer Nature - SN SciGraph project
97 rdf:type schema:Organization
98 N8ada308f3bb145bfb1dba4900e9fc9c4 rdf:first sg:person.01076440533.87
99 rdf:rest N78f0beababe141d097a7b3edf93ea416
100 Nc310f8ff50224f2e8e49086b73a97a53 schema:name dimensions_id
101 schema:value pub.1049774120
102 rdf:type schema:PropertyValue
103 Nf436cd1419d6439e95fa4585ab910cd1 rdf:first sg:person.01334414011.76
104 rdf:rest Nf8feaa2fc6d64670ac349d095182845b
105 Nf693046119d9423c80c07e73857aaf35 schema:name doi
106 schema:value 10.1007/s11032-016-0476-9
107 rdf:type schema:PropertyValue
108 Nf8feaa2fc6d64670ac349d095182845b rdf:first sg:person.01111134275.07
109 rdf:rest rdf:nil
110 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
111 schema:name Biological Sciences
112 rdf:type schema:DefinedTerm
113 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
114 schema:name Genetics
115 rdf:type schema:DefinedTerm
116 sg:grant.7176762 http://pending.schema.org/fundedItem sg:pub.10.1007/s11032-016-0476-9
117 rdf:type schema:MonetaryGrant
118 sg:journal.1114043 schema:issn 1380-3743
119 1572-9788
120 schema:name Molecular Breeding
121 rdf:type schema:Periodical
122 sg:person.01076440533.87 schema:affiliation https://www.grid.ac/institutes/grid.464357.7
123 schema:familyName Wu
124 schema:givenName Jian
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01076440533.87
126 rdf:type schema:Person
127 sg:person.01111134275.07 schema:affiliation https://www.grid.ac/institutes/grid.464357.7
128 schema:familyName Wang
129 schema:givenName Xiaowu
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111134275.07
131 rdf:type schema:Person
132 sg:person.01144553733.83 schema:affiliation https://www.grid.ac/institutes/grid.464357.7
133 schema:familyName Liang
134 schema:givenName Jianli
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144553733.83
136 rdf:type schema:Person
137 sg:person.01334414011.76 schema:affiliation https://www.grid.ac/institutes/grid.464357.7
138 schema:familyName Cheng
139 schema:givenName Feng
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01334414011.76
141 rdf:type schema:Person
142 sg:person.013644661641.61 schema:affiliation https://www.grid.ac/institutes/grid.464357.7
143 schema:familyName Cui
144 schema:givenName Yinan
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013644661641.61
146 rdf:type schema:Person
147 sg:person.016602712035.28 schema:affiliation https://www.grid.ac/institutes/grid.464357.7
148 schema:familyName Fu
149 schema:givenName Lixia
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016602712035.28
151 rdf:type schema:Person
152 sg:person.0612155067.07 schema:affiliation https://www.grid.ac/institutes/grid.464357.7
153 schema:familyName Cai
154 schema:givenName Chengcheng
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0612155067.07
156 rdf:type schema:Person
157 sg:pub.10.1007/bf00215038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041427615
158 https://doi.org/10.1007/bf00215038
159 rdf:type schema:CreativeWork
160 sg:pub.10.1007/bf00564200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045883721
161 https://doi.org/10.1007/bf00564200
162 rdf:type schema:CreativeWork
163 sg:pub.10.1007/bf02772892 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013367726
164 https://doi.org/10.1007/bf02772892
165 rdf:type schema:CreativeWork
166 sg:pub.10.1007/s00299-008-0507-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1025775650
167 https://doi.org/10.1007/s00299-008-0507-z
168 rdf:type schema:CreativeWork
169 sg:pub.10.1007/s00606-004-0293-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013421660
170 https://doi.org/10.1007/s00606-004-0293-1
171 rdf:type schema:CreativeWork
172 sg:pub.10.1007/s10681-012-0643-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1045414126
173 https://doi.org/10.1007/s10681-012-0643-y
174 rdf:type schema:CreativeWork
175 sg:pub.10.1007/s11032-013-9869-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030379311
176 https://doi.org/10.1007/s11032-013-9869-1
177 rdf:type schema:CreativeWork
178 sg:pub.10.1007/s11032-015-0202-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1022005710
179 https://doi.org/10.1007/s11032-015-0202-z
180 rdf:type schema:CreativeWork
181 sg:pub.10.1007/s11032-015-0240-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006608566
182 https://doi.org/10.1007/s11032-015-0240-6
183 rdf:type schema:CreativeWork
184 sg:pub.10.1007/s12284-009-9025-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1024460736
185 https://doi.org/10.1007/s12284-009-9025-z
186 rdf:type schema:CreativeWork
187 sg:pub.10.1023/a:1009651919792 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038777471
188 https://doi.org/10.1023/a:1009651919792
189 rdf:type schema:CreativeWork
190 sg:pub.10.1023/a:1014875206165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044165706
191 https://doi.org/10.1023/a:1014875206165
192 rdf:type schema:CreativeWork
193 sg:pub.10.1038/322652a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015060706
194 https://doi.org/10.1038/322652a0
195 rdf:type schema:CreativeWork
196 sg:pub.10.1038/nature08670 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017534919
197 https://doi.org/10.1038/nature08670
198 rdf:type schema:CreativeWork
199 sg:pub.10.1038/nature10158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002525491
200 https://doi.org/10.1038/nature10158
201 rdf:type schema:CreativeWork
202 sg:pub.10.1038/nature11119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047486795
203 https://doi.org/10.1038/nature11119
204 rdf:type schema:CreativeWork
205 sg:pub.10.1038/nature11798 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038528047
206 https://doi.org/10.1038/nature11798
207 rdf:type schema:CreativeWork
208 sg:pub.10.1038/nature11997 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050820070
209 https://doi.org/10.1038/nature11997
210 rdf:type schema:CreativeWork
211 sg:pub.10.1038/ncomms4930 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005748112
212 https://doi.org/10.1038/ncomms4930
213 rdf:type schema:CreativeWork
214 sg:pub.10.1038/ng.695 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009890914
215 https://doi.org/10.1038/ng.695
216 rdf:type schema:CreativeWork
217 sg:pub.10.1038/ng.919 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035519342
218 https://doi.org/10.1038/ng.919
219 rdf:type schema:CreativeWork
220 sg:pub.10.1038/nrg2626 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023911485
221 https://doi.org/10.1038/nrg2626
222 rdf:type schema:CreativeWork
223 sg:pub.10.1038/nrg3012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034382223
224 https://doi.org/10.1038/nrg3012
225 rdf:type schema:CreativeWork
226 sg:pub.10.1186/1297-9686-34-3-275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035399200
227 https://doi.org/10.1186/1297-9686-34-3-275
228 rdf:type schema:CreativeWork
229 sg:pub.10.1186/1297-9686-42-12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007601828
230 https://doi.org/10.1186/1297-9686-42-12
231 rdf:type schema:CreativeWork
232 sg:pub.10.1186/1471-2148-10-98 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008303520
233 https://doi.org/10.1186/1471-2148-10-98
234 rdf:type schema:CreativeWork
235 sg:pub.10.1186/1471-2164-13-341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003392841
236 https://doi.org/10.1186/1471-2164-13-341
237 rdf:type schema:CreativeWork
238 https://app.dimensions.ai/details/publication/pub.1075259844 schema:CreativeWork
239 https://app.dimensions.ai/details/publication/pub.1081643579 schema:CreativeWork
240 https://doi.org/10.1002/0471687545 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109700873
241 rdf:type schema:CreativeWork
242 https://doi.org/10.1002/9781118473023.ch10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002299348
243 rdf:type schema:CreativeWork
244 https://doi.org/10.1016/0092-8674(79)90200-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006967649
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1016/0888-7543(89)90129-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002919474
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1016/j.copbio.2012.09.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010102345
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1016/j.surg.2012.07.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052021011
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1016/j.tibtech.2009.05.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018973914
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1073/pnas.151244298 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001425614
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1093/bioinformatics/btm220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048339526
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1093/bioinformatics/btp324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038266369
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1093/bioinformatics/btp352 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023014918
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1093/bioinformatics/btp379 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023909949
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1093/bioinformatics/btp698 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012031985
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1093/molbev/msp188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052429020
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1093/nar/18.22.6531 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022940325
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1093/nar/22.21.4527 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010118065
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1101/gr.089516.108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026616147
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1101/sqb.1974.039.01.056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060404449
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1104/pp.108.126375 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003179551
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1111/j.1467-7652.2009.00406.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1021188397
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1126/science.1068275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020691036
281 rdf:type schema:CreativeWork
282 https://doi.org/10.1126/science.1178534 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062460510
283 rdf:type schema:CreativeWork
284 https://doi.org/10.1126/science.3051381 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062586161
285 rdf:type schema:CreativeWork
286 https://doi.org/10.1139/g05-044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015351735
287 rdf:type schema:CreativeWork
288 https://doi.org/10.1139/g06-067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036255247
289 rdf:type schema:CreativeWork
290 https://www.grid.ac/institutes/grid.464357.7 schema:alternateName Institute of Vegetables and Flowers
291 schema:name Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun, Nandajie No. 12, Haidian District, 100081, Beijing, People’s Republic of China
292 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...