Pooled mapping: an efficient method of calling variations for population samples with low-depth resequencing data View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-04-09

AUTHORS

Lixia Fu, Chengcheng Cai, Yinan Cui, Jian Wu, Jianli Liang, Feng Cheng, Xiaowu Wang

ABSTRACT

Whole-genome resequencing (WGR) is a high-throughput way to determine genomic variations in breeding-related research. Accuracy and sensitivity are two of the most important issues in variation calling of WGR, especially for samples with low-depth resequencing data, which are used to reduce cost and save time in studies as survey of core germplasms from natural populations or genome-based breeding selection in segregation populations. An approach called pooled mapping was developed to call variations from low-depth resequencing data of natural or segregation populations. It is highly accurate and sensitive. First, pooled mapping creates a library of confident polymorphic loci in genomes of the population; then, the genotypes are called out at these confident loci for each sample in an efficient manner. The reliability of this pooled mapping method was confirmed using simulated datasets, real resequencing data and experimental genotyping. With onefold simulated resequencing data, results showed that pooled mapping identified SNPs in high accuracy (99.59 %) and sensitivity (93 %), compared to the commonly used method (accuracy: 29 %; sensitivity: 56 %). For the real low-depth resequencing data (≈0.8×) of 281 B. oleracea accessions, four loci corresponding to 1063 sites were selected for KASP genotyping to confirm the performance of pooled mapping. We found for all the 875 homozygous sites analyzed, pooled mapping achieved accuracy as 98.24 % and a sensitivity as 90.97 %. In conclusion, pooled mapping is an efficient means of determining reliable genomic variations with limited resequencing data for population samples. It will be a valuable tool in population genomic analysis and genome-based breeding research. More... »

PAGES

48

References to SciGraph publications

  • 2002-03. Data mining for simple sequence repeats in expressed sequence tags from barley, maize, rice, sorghum and wheat in PLANT MOLECULAR BIOLOGY
  • 1986-08. Cryptic simplicity in DNA is a major source of genetic variation in NATURE
  • 2012-12-19. Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres in NATURE
  • 2001-09. Nonanchored Inter Simple Sequence Repeat (ISSR) markers: Reproducible and specific tools for genome fingerprinting in PLANT MOLECULAR BIOLOGY REPORTER
  • 2009-12-08. Sequencing technologies — the next generation in NATURE REVIEWS GENETICS
  • 2008-02-02. Advances in molecular marker techniques and their applications in plant sciences in PLANT CELL REPORTS
  • 2005-11-09. Molecular phylogeny in Indian Tinospora species by DNA based molecular markers in PLANT SYSTEMATICS AND EVOLUTION
  • 2012-05-30. The tomato genome sequence provides insights into fleshy fruit evolution in NATURE
  • 2014-05-23. The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes in NATURE COMMUNICATIONS
  • 2015-01-21. Whole-genome resequencing: changing the paradigms of SNP detection, molecular mapping and gene discovery in MOLECULAR BREEDING
  • 2012-03-27. Development of a core set of SSR markers for the characterization of Gossypium germplasm in EUPHYTICA
  • 2010-05-10. Estimating genetic diversity across the neutral genome with the use of dense marker maps in GENETICS SELECTION EVOLUTION
  • 2010-04-08. The evolutionary history of the Arabidopsis lyrata complex: a hybrid in the amphi-Beringian area closes a large distribution gap and builds up a genetic barrier in BMC ECOLOGY AND EVOLUTION
  • 2010-01. Genome sequence of the palaeopolyploid soybean in NATURE
  • 2010-10-24. Genome-wide association studies of 14 agronomic traits in rice landraces in NATURE GENETICS
  • 1997-04. Genome mapping, molecular markers and marker-assisted selection in crop plants in MOLECULAR BREEDING
  • 2015-01-15. Precise identification of two wheat–Thinopyrum intermedium substitutions reveals the compensation and rearrangement between wheat and Thinopyrum chromosomes in MOLECULAR BREEDING
  • 2002-05-15. A review on SNP and other types of molecular markers and their use in animal genetics in GENETICS SELECTION EVOLUTION
  • 2013-05-26. A high-density genetic map of the Medicago truncatula major freezing tolerance QTL on chromosome 6 reveals colinearity with a QTL related to freezing damage on Pisum sativum linkage group VI in MOLECULAR BREEDING
  • 2011-08-28. The genome of the mesopolyploid crop species Brassica rapa in NATURE GENETICS
  • 2011-07-10. Genome sequence and analysis of the tuber crop potato in NATURE
  • 1993-02. Development of reliable PCR-based markers linked to downy mildew resistance genes in lettuce in THEORETICAL AND APPLIED GENETICS
  • 2013-03-24. Draft genome of the wheat A-genome progenitor Triticum urartu in NATURE
  • 2011-06-17. Genome-wide genetic marker discovery and genotyping using next-generation sequencing in NATURE REVIEWS GENETICS
  • 2012-07-24. A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers in BMC GENOMICS
  • 1996-09. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis in MOLECULAR BREEDING
  • 2009-03-07. De Novo Next Generation Sequencing of Plant Genomes in RICE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11032-016-0476-9

    DOI

    http://dx.doi.org/10.1007/s11032-016-0476-9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1049774120


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun, Nandajie No. 12, Haidian District, 100081, Beijing, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.464357.7", 
              "name": [
                "Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun, Nandajie No. 12, Haidian District, 100081, Beijing, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fu", 
            "givenName": "Lixia", 
            "id": "sg:person.016602712035.28", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016602712035.28"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun, Nandajie No. 12, Haidian District, 100081, Beijing, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.464357.7", 
              "name": [
                "Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun, Nandajie No. 12, Haidian District, 100081, Beijing, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cai", 
            "givenName": "Chengcheng", 
            "id": "sg:person.0612155067.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0612155067.07"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun, Nandajie No. 12, Haidian District, 100081, Beijing, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.464357.7", 
              "name": [
                "Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun, Nandajie No. 12, Haidian District, 100081, Beijing, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cui", 
            "givenName": "Yinan", 
            "id": "sg:person.013644661641.61", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013644661641.61"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun, Nandajie No. 12, Haidian District, 100081, Beijing, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.464357.7", 
              "name": [
                "Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun, Nandajie No. 12, Haidian District, 100081, Beijing, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wu", 
            "givenName": "Jian", 
            "id": "sg:person.01076440533.87", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01076440533.87"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun, Nandajie No. 12, Haidian District, 100081, Beijing, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.464357.7", 
              "name": [
                "Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun, Nandajie No. 12, Haidian District, 100081, Beijing, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liang", 
            "givenName": "Jianli", 
            "id": "sg:person.01144553733.83", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144553733.83"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun, Nandajie No. 12, Haidian District, 100081, Beijing, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.464357.7", 
              "name": [
                "Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun, Nandajie No. 12, Haidian District, 100081, Beijing, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cheng", 
            "givenName": "Feng", 
            "id": "sg:person.01334414011.76", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01334414011.76"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun, Nandajie No. 12, Haidian District, 100081, Beijing, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.464357.7", 
              "name": [
                "Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun, Nandajie No. 12, Haidian District, 100081, Beijing, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Xiaowu", 
            "id": "sg:person.01111134275.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111134275.07"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/nature08670", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017534919", 
              "https://doi.org/10.1038/nature08670"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1014875206165", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044165706", 
              "https://doi.org/10.1023/a:1014875206165"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11032-013-9869-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030379311", 
              "https://doi.org/10.1007/s11032-013-9869-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12284-009-9025-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024460736", 
              "https://doi.org/10.1007/s12284-009-9025-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2148-10-98", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008303520", 
              "https://doi.org/10.1186/1471-2148-10-98"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00606-004-0293-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013421660", 
              "https://doi.org/10.1007/s00606-004-0293-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg2626", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023911485", 
              "https://doi.org/10.1038/nrg2626"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11032-015-0240-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006608566", 
              "https://doi.org/10.1007/s11032-015-0240-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1297-9686-34-3-275", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035399200", 
              "https://doi.org/10.1186/1297-9686-34-3-275"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11997", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050820070", 
              "https://doi.org/10.1038/nature11997"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/322652a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015060706", 
              "https://doi.org/10.1038/322652a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nrg3012", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034382223", 
              "https://doi.org/10.1038/nrg3012"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1297-9686-42-12", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007601828", 
              "https://doi.org/10.1186/1297-9686-42-12"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10681-012-0643-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045414126", 
              "https://doi.org/10.1007/s10681-012-0643-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11798", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038528047", 
              "https://doi.org/10.1038/nature11798"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1009651919792", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038777471", 
              "https://doi.org/10.1023/a:1009651919792"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature10158", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002525491", 
              "https://doi.org/10.1038/nature10158"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02772892", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1013367726", 
              "https://doi.org/10.1007/bf02772892"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00299-008-0507-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025775650", 
              "https://doi.org/10.1007/s00299-008-0507-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00215038", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041427615", 
              "https://doi.org/10.1007/bf00215038"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ncomms4930", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005748112", 
              "https://doi.org/10.1038/ncomms4930"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2164-13-341", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003392841", 
              "https://doi.org/10.1186/1471-2164-13-341"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00564200", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045883721", 
              "https://doi.org/10.1007/bf00564200"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.919", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035519342", 
              "https://doi.org/10.1038/ng.919"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11032-015-0202-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022005710", 
              "https://doi.org/10.1007/s11032-015-0202-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature11119", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047486795", 
              "https://doi.org/10.1038/nature11119"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/ng.695", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009890914", 
              "https://doi.org/10.1038/ng.695"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-04-09", 
        "datePublishedReg": "2016-04-09", 
        "description": "Whole-genome resequencing (WGR) is a high-throughput way to determine genomic variations in breeding-related research. Accuracy and sensitivity are two of the most important issues in variation calling of WGR, especially for samples with low-depth resequencing data, which are used to reduce cost and save time in studies as survey of core germplasms from natural populations or genome-based breeding selection in segregation populations. An approach called pooled mapping was developed to call variations from low-depth resequencing data of natural or segregation populations. It is highly accurate and sensitive. First, pooled mapping creates a library of confident polymorphic loci in genomes of the population; then, the genotypes are called out at these confident loci for each sample in an efficient manner. The reliability of this pooled mapping method was confirmed using simulated datasets, real resequencing data and experimental genotyping. With onefold simulated resequencing data, results showed that pooled mapping identified SNPs in high accuracy (99.59\u00a0%) and sensitivity (93\u00a0%), compared to the commonly used method (accuracy: 29\u00a0%; sensitivity: 56\u00a0%). For the real low-depth resequencing data (\u22480.8\u00d7) of 281 B. oleracea accessions, four loci corresponding to 1063 sites were selected for KASP genotyping to confirm the performance of pooled mapping. We found for all the 875 homozygous sites analyzed, pooled mapping achieved accuracy as 98.24\u00a0% and a sensitivity as 90.97\u00a0%. In conclusion, pooled mapping is an efficient means of determining reliable genomic variations with limited resequencing data for population samples. It will be a valuable tool in population genomic analysis and genome-based breeding research.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11032-016-0476-9", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.7176762", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1114043", 
            "issn": [
              "1380-3743", 
              "1572-9788"
            ], 
            "name": "Molecular Breeding", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "36"
          }
        ], 
        "keywords": [
          "efficient manner", 
          "high accuracy", 
          "important issue", 
          "accuracy", 
          "mapping method", 
          "mapping", 
          "dataset", 
          "efficient means", 
          "efficient method", 
          "whole-genome resequencing", 
          "data", 
          "library", 
          "method", 
          "research", 
          "issues", 
          "cost", 
          "segregation population", 
          "reliability", 
          "B. oleracea accessions", 
          "performance", 
          "tool", 
          "high-throughput way", 
          "way", 
          "core germplasm", 
          "breeding selection", 
          "selection", 
          "population genomic analyses", 
          "breeding research", 
          "genomic variation", 
          "calling", 
          "valuable tool", 
          "time", 
          "natural populations", 
          "polymorphic loci", 
          "manner", 
          "germplasm", 
          "loci", 
          "results", 
          "accessions", 
          "KASP", 
          "means", 
          "genomic analysis", 
          "resequencing", 
          "variation", 
          "survey", 
          "population", 
          "genotypes", 
          "genotyping", 
          "SNPs", 
          "analysis", 
          "genome", 
          "sites", 
          "sensitivity", 
          "samples", 
          "study", 
          "approach", 
          "conclusion", 
          "homozygous sites", 
          "population sample"
        ], 
        "name": "Pooled mapping: an efficient method of calling variations for population samples with low-depth resequencing data", 
        "pagination": "48", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1049774120"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11032-016-0476-9"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11032-016-0476-9", 
          "https://app.dimensions.ai/details/publication/pub.1049774120"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:34", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_703.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11032-016-0476-9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11032-016-0476-9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11032-016-0476-9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11032-016-0476-9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11032-016-0476-9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    268 TRIPLES      21 PREDICATES      110 URIs      75 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11032-016-0476-9 schema:about anzsrc-for:06
    2 anzsrc-for:0604
    3 schema:author N4e92908787ba457d853420002be558da
    4 schema:citation sg:pub.10.1007/bf00215038
    5 sg:pub.10.1007/bf00564200
    6 sg:pub.10.1007/bf02772892
    7 sg:pub.10.1007/s00299-008-0507-z
    8 sg:pub.10.1007/s00606-004-0293-1
    9 sg:pub.10.1007/s10681-012-0643-y
    10 sg:pub.10.1007/s11032-013-9869-1
    11 sg:pub.10.1007/s11032-015-0202-z
    12 sg:pub.10.1007/s11032-015-0240-6
    13 sg:pub.10.1007/s12284-009-9025-z
    14 sg:pub.10.1023/a:1009651919792
    15 sg:pub.10.1023/a:1014875206165
    16 sg:pub.10.1038/322652a0
    17 sg:pub.10.1038/nature08670
    18 sg:pub.10.1038/nature10158
    19 sg:pub.10.1038/nature11119
    20 sg:pub.10.1038/nature11798
    21 sg:pub.10.1038/nature11997
    22 sg:pub.10.1038/ncomms4930
    23 sg:pub.10.1038/ng.695
    24 sg:pub.10.1038/ng.919
    25 sg:pub.10.1038/nrg2626
    26 sg:pub.10.1038/nrg3012
    27 sg:pub.10.1186/1297-9686-34-3-275
    28 sg:pub.10.1186/1297-9686-42-12
    29 sg:pub.10.1186/1471-2148-10-98
    30 sg:pub.10.1186/1471-2164-13-341
    31 schema:datePublished 2016-04-09
    32 schema:datePublishedReg 2016-04-09
    33 schema:description Whole-genome resequencing (WGR) is a high-throughput way to determine genomic variations in breeding-related research. Accuracy and sensitivity are two of the most important issues in variation calling of WGR, especially for samples with low-depth resequencing data, which are used to reduce cost and save time in studies as survey of core germplasms from natural populations or genome-based breeding selection in segregation populations. An approach called pooled mapping was developed to call variations from low-depth resequencing data of natural or segregation populations. It is highly accurate and sensitive. First, pooled mapping creates a library of confident polymorphic loci in genomes of the population; then, the genotypes are called out at these confident loci for each sample in an efficient manner. The reliability of this pooled mapping method was confirmed using simulated datasets, real resequencing data and experimental genotyping. With onefold simulated resequencing data, results showed that pooled mapping identified SNPs in high accuracy (99.59 %) and sensitivity (93 %), compared to the commonly used method (accuracy: 29 %; sensitivity: 56 %). For the real low-depth resequencing data (≈0.8×) of 281 B. oleracea accessions, four loci corresponding to 1063 sites were selected for KASP genotyping to confirm the performance of pooled mapping. We found for all the 875 homozygous sites analyzed, pooled mapping achieved accuracy as 98.24 % and a sensitivity as 90.97 %. In conclusion, pooled mapping is an efficient means of determining reliable genomic variations with limited resequencing data for population samples. It will be a valuable tool in population genomic analysis and genome-based breeding research.
    34 schema:genre article
    35 schema:isAccessibleForFree false
    36 schema:isPartOf N89b5bac621a7496b880e38a38e850beb
    37 N9ff3a42b7787431ba4db0333ef74b949
    38 sg:journal.1114043
    39 schema:keywords B. oleracea accessions
    40 KASP
    41 SNPs
    42 accessions
    43 accuracy
    44 analysis
    45 approach
    46 breeding research
    47 breeding selection
    48 calling
    49 conclusion
    50 core germplasm
    51 cost
    52 data
    53 dataset
    54 efficient manner
    55 efficient means
    56 efficient method
    57 genome
    58 genomic analysis
    59 genomic variation
    60 genotypes
    61 genotyping
    62 germplasm
    63 high accuracy
    64 high-throughput way
    65 homozygous sites
    66 important issue
    67 issues
    68 library
    69 loci
    70 manner
    71 mapping
    72 mapping method
    73 means
    74 method
    75 natural populations
    76 performance
    77 polymorphic loci
    78 population
    79 population genomic analyses
    80 population sample
    81 reliability
    82 research
    83 resequencing
    84 results
    85 samples
    86 segregation population
    87 selection
    88 sensitivity
    89 sites
    90 study
    91 survey
    92 time
    93 tool
    94 valuable tool
    95 variation
    96 way
    97 whole-genome resequencing
    98 schema:name Pooled mapping: an efficient method of calling variations for population samples with low-depth resequencing data
    99 schema:pagination 48
    100 schema:productId N3aa6ab10df1144cbb791aba88ff219db
    101 Nb901014ec483403fac47bbaa2e79a98b
    102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049774120
    103 https://doi.org/10.1007/s11032-016-0476-9
    104 schema:sdDatePublished 2022-12-01T06:34
    105 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    106 schema:sdPublisher Nd6bc9b939e1c44c5b3e59a2e72ab45b2
    107 schema:url https://doi.org/10.1007/s11032-016-0476-9
    108 sgo:license sg:explorer/license/
    109 sgo:sdDataset articles
    110 rdf:type schema:ScholarlyArticle
    111 N01fbb209bfcb45468793677bcc1b415d rdf:first sg:person.013644661641.61
    112 rdf:rest Ne70d8fe63a5e4a81967fdbd1c75c367e
    113 N22c03c0bab7e4bb69f46c6e82b2bd9aa rdf:first sg:person.01144553733.83
    114 rdf:rest N3ca3cfce17624e2a826ddc9f7ab9dd7d
    115 N3aa6ab10df1144cbb791aba88ff219db schema:name doi
    116 schema:value 10.1007/s11032-016-0476-9
    117 rdf:type schema:PropertyValue
    118 N3ca3cfce17624e2a826ddc9f7ab9dd7d rdf:first sg:person.01334414011.76
    119 rdf:rest N4911dd09dd564e6789df171afb39d03e
    120 N4911dd09dd564e6789df171afb39d03e rdf:first sg:person.01111134275.07
    121 rdf:rest rdf:nil
    122 N4e92908787ba457d853420002be558da rdf:first sg:person.016602712035.28
    123 rdf:rest Nf1efb2b50898409b8ff4a41ce4786e62
    124 N89b5bac621a7496b880e38a38e850beb schema:issueNumber 4
    125 rdf:type schema:PublicationIssue
    126 N9ff3a42b7787431ba4db0333ef74b949 schema:volumeNumber 36
    127 rdf:type schema:PublicationVolume
    128 Nb901014ec483403fac47bbaa2e79a98b schema:name dimensions_id
    129 schema:value pub.1049774120
    130 rdf:type schema:PropertyValue
    131 Nd6bc9b939e1c44c5b3e59a2e72ab45b2 schema:name Springer Nature - SN SciGraph project
    132 rdf:type schema:Organization
    133 Ne70d8fe63a5e4a81967fdbd1c75c367e rdf:first sg:person.01076440533.87
    134 rdf:rest N22c03c0bab7e4bb69f46c6e82b2bd9aa
    135 Nf1efb2b50898409b8ff4a41ce4786e62 rdf:first sg:person.0612155067.07
    136 rdf:rest N01fbb209bfcb45468793677bcc1b415d
    137 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    138 schema:name Biological Sciences
    139 rdf:type schema:DefinedTerm
    140 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    141 schema:name Genetics
    142 rdf:type schema:DefinedTerm
    143 sg:grant.7176762 http://pending.schema.org/fundedItem sg:pub.10.1007/s11032-016-0476-9
    144 rdf:type schema:MonetaryGrant
    145 sg:journal.1114043 schema:issn 1380-3743
    146 1572-9788
    147 schema:name Molecular Breeding
    148 schema:publisher Springer Nature
    149 rdf:type schema:Periodical
    150 sg:person.01076440533.87 schema:affiliation grid-institutes:grid.464357.7
    151 schema:familyName Wu
    152 schema:givenName Jian
    153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01076440533.87
    154 rdf:type schema:Person
    155 sg:person.01111134275.07 schema:affiliation grid-institutes:grid.464357.7
    156 schema:familyName Wang
    157 schema:givenName Xiaowu
    158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01111134275.07
    159 rdf:type schema:Person
    160 sg:person.01144553733.83 schema:affiliation grid-institutes:grid.464357.7
    161 schema:familyName Liang
    162 schema:givenName Jianli
    163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01144553733.83
    164 rdf:type schema:Person
    165 sg:person.01334414011.76 schema:affiliation grid-institutes:grid.464357.7
    166 schema:familyName Cheng
    167 schema:givenName Feng
    168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01334414011.76
    169 rdf:type schema:Person
    170 sg:person.013644661641.61 schema:affiliation grid-institutes:grid.464357.7
    171 schema:familyName Cui
    172 schema:givenName Yinan
    173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013644661641.61
    174 rdf:type schema:Person
    175 sg:person.016602712035.28 schema:affiliation grid-institutes:grid.464357.7
    176 schema:familyName Fu
    177 schema:givenName Lixia
    178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016602712035.28
    179 rdf:type schema:Person
    180 sg:person.0612155067.07 schema:affiliation grid-institutes:grid.464357.7
    181 schema:familyName Cai
    182 schema:givenName Chengcheng
    183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0612155067.07
    184 rdf:type schema:Person
    185 sg:pub.10.1007/bf00215038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041427615
    186 https://doi.org/10.1007/bf00215038
    187 rdf:type schema:CreativeWork
    188 sg:pub.10.1007/bf00564200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045883721
    189 https://doi.org/10.1007/bf00564200
    190 rdf:type schema:CreativeWork
    191 sg:pub.10.1007/bf02772892 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013367726
    192 https://doi.org/10.1007/bf02772892
    193 rdf:type schema:CreativeWork
    194 sg:pub.10.1007/s00299-008-0507-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1025775650
    195 https://doi.org/10.1007/s00299-008-0507-z
    196 rdf:type schema:CreativeWork
    197 sg:pub.10.1007/s00606-004-0293-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013421660
    198 https://doi.org/10.1007/s00606-004-0293-1
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1007/s10681-012-0643-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1045414126
    201 https://doi.org/10.1007/s10681-012-0643-y
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1007/s11032-013-9869-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030379311
    204 https://doi.org/10.1007/s11032-013-9869-1
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1007/s11032-015-0202-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1022005710
    207 https://doi.org/10.1007/s11032-015-0202-z
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1007/s11032-015-0240-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006608566
    210 https://doi.org/10.1007/s11032-015-0240-6
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1007/s12284-009-9025-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1024460736
    213 https://doi.org/10.1007/s12284-009-9025-z
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1023/a:1009651919792 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038777471
    216 https://doi.org/10.1023/a:1009651919792
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1023/a:1014875206165 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044165706
    219 https://doi.org/10.1023/a:1014875206165
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1038/322652a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015060706
    222 https://doi.org/10.1038/322652a0
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1038/nature08670 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017534919
    225 https://doi.org/10.1038/nature08670
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1038/nature10158 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002525491
    228 https://doi.org/10.1038/nature10158
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1038/nature11119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047486795
    231 https://doi.org/10.1038/nature11119
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1038/nature11798 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038528047
    234 https://doi.org/10.1038/nature11798
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1038/nature11997 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050820070
    237 https://doi.org/10.1038/nature11997
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1038/ncomms4930 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005748112
    240 https://doi.org/10.1038/ncomms4930
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.1038/ng.695 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009890914
    243 https://doi.org/10.1038/ng.695
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.1038/ng.919 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035519342
    246 https://doi.org/10.1038/ng.919
    247 rdf:type schema:CreativeWork
    248 sg:pub.10.1038/nrg2626 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023911485
    249 https://doi.org/10.1038/nrg2626
    250 rdf:type schema:CreativeWork
    251 sg:pub.10.1038/nrg3012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034382223
    252 https://doi.org/10.1038/nrg3012
    253 rdf:type schema:CreativeWork
    254 sg:pub.10.1186/1297-9686-34-3-275 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035399200
    255 https://doi.org/10.1186/1297-9686-34-3-275
    256 rdf:type schema:CreativeWork
    257 sg:pub.10.1186/1297-9686-42-12 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007601828
    258 https://doi.org/10.1186/1297-9686-42-12
    259 rdf:type schema:CreativeWork
    260 sg:pub.10.1186/1471-2148-10-98 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008303520
    261 https://doi.org/10.1186/1471-2148-10-98
    262 rdf:type schema:CreativeWork
    263 sg:pub.10.1186/1471-2164-13-341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003392841
    264 https://doi.org/10.1186/1471-2164-13-341
    265 rdf:type schema:CreativeWork
    266 grid-institutes:grid.464357.7 schema:alternateName Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun, Nandajie No. 12, Haidian District, 100081, Beijing, People’s Republic of China
    267 schema:name Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun, Nandajie No. 12, Haidian District, 100081, Beijing, People’s Republic of China
    268 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...