Meta-analysis of quantitative trait loci for grain yield and component traits under reproductive-stage drought stress in an upland rice population View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2014-06-29

AUTHORS

Kurniawan R. Trijatmiko, Supriyanta, Joko Prasetiyono, Michael J. Thomson, Casiana M. Vera Cruz, Sugiono Moeljopawiro, Andy Pereira

ABSTRACT

A recombinant inbred population developed from a cross between high-yielding lowland rice (Oryza sativa L.) subspecies indica cv. IR64 and upland tropical rice subspecies japonica cv. Cabacu was used to identify quantitative trait loci (QTLs) for grain yield (GY) and component traits under reproductive-stage drought stress. One hundred fifty-four lines were grown in field trials in Indonesia under aerobic conditions by giving surface irrigation to field capacity every 4 days. Water stress was imposed for a period of 15 days during pre-flowering by withholding irrigation at 65 days after seeding. Leaf rolling was scored at the end of the stress period and eight agronomic traits were evaluated after recovery. The population was also evaluated for root pulling force, and a total of 201 single nucleotide polymorphism markers were used to construct the molecular genetic linkage map and QTL mapping. A QTL for GY under drought stress was identified in a region close to the sd1 locus on chromosome 1. QTL meta-analysis across diverse populations showed that this QTL was conserved across genetic backgrounds and co-localized with QTLs for leaf rolling and osmotic adjustment (OA). A QTL for percent seed set and grains per panicle under drought stress was identified on chromosome 8 in the same region as a QTL for OA previously identified in three different populations. More... »

PAGES

283-295

References to SciGraph publications

  • 1988-12. Molecular mapping of rice chromosomes in THEORETICAL AND APPLIED GENETICS
  • 2005-08. The map-based sequence of the rice genome in NATURE
  • 2011-11-20. High-throughput single nucleotide polymorphism genotyping for breeding applications in rice using the BeadXpress platform in MOLECULAR BREEDING
  • 2011-10-18. qDTY1.1, a major QTL for rice grain yield under reproductive-stage drought stress with a consistent effect in multiple elite genetic backgrounds in BMC GENETICS
  • 1995-06. Locating genes associated with root morphology and drought avoidance in rice via linkage to molecular markers in THEORETICAL AND APPLIED GENETICS
  • 2003-08-12. Mapping osmotic adjustment in an advanced back-cross inbred population of rice in THEORETICAL AND APPLIED GENETICS
  • 2004-07-29. Yield response to water deficit in an upland rice mapping population: associations among traits and genetic markers in THEORETICAL AND APPLIED GENETICS
  • 2001-07. Locating genomic regions associated with components of drought resistance in rice: comparative mapping within and across species in THEORETICAL AND APPLIED GENETICS
  • 2004-06-25. Saturation mapping of QTL regions and identification of putative candidate genes for drought tolerance in rice in MOLECULAR GENETICS AND GENOMICS
  • 2005-10-01. QTLs for drought escape and tolerance identified in a set of random introgression lines of rice in THEORETICAL AND APPLIED GENETICS
  • 2001-10. Green revolution: the way forward in NATURE REVIEWS GENETICS
  • 1981-06. Evaluation of a simple technique for characterizing rice root systems in relation to drought resistance in EUPHYTICA
  • 1997-02. Chromosomal regions associated with segregation distortion of molecular markers in F2 , backcross, doubled haploid, and recombinant inbred populations in rice (Oryza sativa L.) in MOLECULAR GENETICS AND GENOMICS
  • 2002-03. Mapping QTLs associated with drought avoidance in upland rice grown in the Philippines and West Africa in PLANT MOLECULAR BIOLOGY
  • 2009-10-17. Identification and characterization of large-effect quantitative trait loci for grain yield under lowland drought stress in rice using bulk-segregant analysis in THEORETICAL AND APPLIED GENETICS
  • 2000-02. Mapping QTLs associated with drought avoidance in upland rice in MOLECULAR BREEDING
  • 2005-08-02. Genetic analysis for drought resistance of rice at reproductive stage in field with different types of soil in THEORETICAL AND APPLIED GENETICS
  • 1996-05. Drought-induced male sterility in rice: Changes in carbohydrate levels and enzyme activities associated with the inhibition of starch accumulation in pollen in PLANT REPRODUCTION
  • 2008-08-15. Gene Nomenclature System for Rice in RICE
  • 2009-08. The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt to deep water in NATURE
  • 1996-08. Association of quantitative trait loci for plant height with major dwarfing genes in rice in HEREDITY
  • 2013-02-12. Three genetic systems controlling growth, development and productivity of rice (Oryza sativa L.): a reevaluation of the ‘Green Revolution’ in THEORETICAL AND APPLIED GENETICS
  • 2000-06. QTLs for cell-membrane stability mapped in rice (Oryza sativa L.) under drought stress in THEORETICAL AND APPLIED GENETICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11032-013-0012-0

    DOI

    http://dx.doi.org/10.1007/s11032-013-0012-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1044444381

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/25076836


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Indonesian Center for Agricultural Biotechnology and Genetic Resources Research and Development, Jl. Tentara Pelajar 3A, Bogor, 16111 Indonesia", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Indonesian Center for Agricultural Biotechnology and Genetic Resources Research and Development, Jl. Tentara Pelajar 3A, Bogor, 16111 Indonesia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Trijatmiko", 
            "givenName": "Kurniawan R.", 
            "id": "sg:person.01340051775.84", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340051775.84"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Banguntapan Field Station, Faculty of Agriculture, Gadjah Mada University, Jl. Socio Justicia Bulaksumur, Yogyakarta, 55281 Indonesia", 
              "id": "http://www.grid.ac/institutes/grid.8570.a", 
              "name": [
                "Banguntapan Field Station, Faculty of Agriculture, Gadjah Mada University, Jl. Socio Justicia Bulaksumur, Yogyakarta, 55281 Indonesia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Supriyanta", 
            "id": "sg:person.013747407011.18", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013747407011.18"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Indonesian Center for Agricultural Biotechnology and Genetic Resources Research and Development, Jl. Tentara Pelajar 3A, Bogor, 16111 Indonesia", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Indonesian Center for Agricultural Biotechnology and Genetic Resources Research and Development, Jl. Tentara Pelajar 3A, Bogor, 16111 Indonesia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Prasetiyono", 
            "givenName": "Joko", 
            "id": "sg:person.010441106216.55", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010441106216.55"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines", 
              "id": "http://www.grid.ac/institutes/grid.419387.0", 
              "name": [
                "International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Thomson", 
            "givenName": "Michael J.", 
            "id": "sg:person.01233652213.76", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01233652213.76"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines", 
              "id": "http://www.grid.ac/institutes/grid.419387.0", 
              "name": [
                "International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cruz", 
            "givenName": "Casiana M. Vera", 
            "id": "sg:person.015534617641.36", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015534617641.36"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Indonesian Center for Agricultural Biotechnology and Genetic Resources Research and Development, Jl. Tentara Pelajar 3A, Bogor, 16111 Indonesia", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Indonesian Center for Agricultural Biotechnology and Genetic Resources Research and Development, Jl. Tentara Pelajar 3A, Bogor, 16111 Indonesia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Moeljopawiro", 
            "givenName": "Sugiono", 
            "id": "sg:person.0723055744.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0723055744.07"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Virginia Bioinformatics Institute, Virginia Polytechnic and State University, Blacksburg, VA USA", 
              "id": "http://www.grid.ac/institutes/grid.438526.e", 
              "name": [
                "Crop, Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR USA", 
                "Virginia Bioinformatics Institute, Virginia Polytechnic and State University, Blacksburg, VA USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pereira", 
            "givenName": "Andy", 
            "id": "sg:person.01344430566.76", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01344430566.76"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1023/a:1009652326121", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022475844", 
              "https://doi.org/10.1023/a:1009652326121"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s001220000534", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042424986", 
              "https://doi.org/10.1007/s001220000534"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1014805625790", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1049875575", 
              "https://doi.org/10.1023/a:1014805625790"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-012-2033-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020561901", 
              "https://doi.org/10.1007/s00122-012-2033-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-009-1168-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036907094", 
              "https://doi.org/10.1007/s00122-009-1168-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/35093585", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023409654", 
              "https://doi.org/10.1038/35093585"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11032-011-9663-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030222899", 
              "https://doi.org/10.1007/s11032-011-9663-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02221396", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004095276", 
              "https://doi.org/10.1007/bf02221396"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature03895", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034843726", 
              "https://doi.org/10.1038/nature03895"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s004380050355", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015260406", 
              "https://doi.org/10.1007/s004380050355"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00438-004-1025-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053602680", 
              "https://doi.org/10.1007/s00438-004-1025-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00222910", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025892414", 
              "https://doi.org/10.1007/bf00222910"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/hdy.1996.117", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036015641", 
              "https://doi.org/10.1038/hdy.1996.117"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-005-0099-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008171930", 
              "https://doi.org/10.1007/s00122-005-0099-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s001220051424", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039022864", 
              "https://doi.org/10.1007/s001220051424"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1471-2156-12-89", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006135375", 
              "https://doi.org/10.1186/1471-2156-12-89"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00033989", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032472736", 
              "https://doi.org/10.1007/bf00033989"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s12284-008-9004-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022052441", 
              "https://doi.org/10.1007/s12284-008-9004-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-005-0040-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010669966", 
              "https://doi.org/10.1007/s00122-005-0040-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00273666", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001248404", 
              "https://doi.org/10.1007/bf00273666"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-004-1731-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041889798", 
              "https://doi.org/10.1007/s00122-004-1731-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00122-003-1360-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020312067", 
              "https://doi.org/10.1007/s00122-003-1360-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nature08258", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050845915", 
              "https://doi.org/10.1038/nature08258"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014-06-29", 
        "datePublishedReg": "2014-06-29", 
        "description": "A recombinant inbred population developed from a cross between high-yielding lowland rice (Oryza sativa L.) subspecies indica cv. IR64 and upland tropical rice subspecies japonica cv. Cabacu was used to identify quantitative trait loci (QTLs) for grain yield (GY) and component traits under reproductive-stage drought stress. One hundred fifty-four lines were grown in field trials in Indonesia under aerobic conditions by giving surface irrigation to field capacity every 4\u00a0days. Water stress was imposed for a period of 15\u00a0days during pre-flowering by withholding irrigation at 65\u00a0days after seeding. Leaf rolling was scored at the end of the stress period and eight agronomic traits were evaluated after recovery. The population was also evaluated for root pulling force, and a total of 201 single nucleotide polymorphism markers were used to construct the molecular genetic linkage map and QTL mapping. A QTL for GY under drought stress was identified in a region close to the sd1 locus on chromosome 1. QTL meta-analysis across diverse populations showed that this QTL was conserved across genetic backgrounds and co-localized with QTLs for leaf rolling and osmotic adjustment (OA). A QTL for percent seed set and grains per panicle under drought stress was identified on chromosome 8 in the same region as a QTL for OA previously identified in three different populations.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11032-013-0012-0", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.8786047", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.3103877", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1114043", 
            "issn": [
              "1380-3743", 
              "1572-9788"
            ], 
            "name": "Molecular Breeding", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "34"
          }
        ], 
        "keywords": [
          "quantitative trait loci", 
          "reproductive stage drought stress", 
          "grain yield", 
          "drought stress", 
          "osmotic adjustment", 
          "component traits", 
          "leaf rolling", 
          "trait loci", 
          "single nucleotide polymorphism (SNP) markers", 
          "upland rice populations", 
          "percent seed set", 
          "genetic linkage map", 
          "molecular genetic linkage map", 
          "agronomic traits", 
          "tropical rice", 
          "lowland rice", 
          "surface irrigation", 
          "water stress", 
          "rice populations", 
          "field capacity", 
          "QTL mapping", 
          "field trials", 
          "polymorphism markers", 
          "linkage map", 
          "seed set", 
          "stress period", 
          "traits", 
          "irrigation", 
          "chromosome 1", 
          "rice", 
          "genetic background", 
          "chromosome 8", 
          "yield", 
          "cv", 
          "loci", 
          "different populations", 
          "IR64", 
          "panicle", 
          "aerobic conditions", 
          "stress", 
          "population", 
          "grains", 
          "recombinants", 
          "cross", 
          "roots", 
          "same region", 
          "diverse populations", 
          "region", 
          "Indonesia", 
          "days", 
          "period", 
          "markers", 
          "mapping", 
          "lines", 
          "conditions", 
          "capacity", 
          "trials", 
          "maps", 
          "total", 
          "recovery", 
          "rolling", 
          "end", 
          "background", 
          "adjustment", 
          "set", 
          "force", 
          "upland tropical rice", 
          "Cabacu", 
          "nucleotide polymorphism markers"
        ], 
        "name": "Meta-analysis of quantitative trait loci for grain yield and component traits under reproductive-stage drought stress in an upland rice population", 
        "pagination": "283-295", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1044444381"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11032-013-0012-0"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "25076836"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11032-013-0012-0", 
          "https://app.dimensions.ai/details/publication/pub.1044444381"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-11-01T18:22", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_628.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11032-013-0012-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11032-013-0012-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11032-013-0012-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11032-013-0012-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11032-013-0012-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    278 TRIPLES      22 PREDICATES      118 URIs      87 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11032-013-0012-0 schema:about anzsrc-for:06
    2 anzsrc-for:0604
    3 schema:author Ne17778885ab34c26b52c1db78067c038
    4 schema:citation sg:pub.10.1007/bf00033989
    5 sg:pub.10.1007/bf00222910
    6 sg:pub.10.1007/bf00273666
    7 sg:pub.10.1007/bf02221396
    8 sg:pub.10.1007/s00122-003-1360-7
    9 sg:pub.10.1007/s00122-004-1731-8
    10 sg:pub.10.1007/s00122-005-0040-1
    11 sg:pub.10.1007/s00122-005-0099-8
    12 sg:pub.10.1007/s00122-009-1168-1
    13 sg:pub.10.1007/s00122-012-2033-1
    14 sg:pub.10.1007/s001220000534
    15 sg:pub.10.1007/s001220051424
    16 sg:pub.10.1007/s00438-004-1025-5
    17 sg:pub.10.1007/s004380050355
    18 sg:pub.10.1007/s11032-011-9663-x
    19 sg:pub.10.1007/s12284-008-9004-9
    20 sg:pub.10.1023/a:1009652326121
    21 sg:pub.10.1023/a:1014805625790
    22 sg:pub.10.1038/35093585
    23 sg:pub.10.1038/hdy.1996.117
    24 sg:pub.10.1038/nature03895
    25 sg:pub.10.1038/nature08258
    26 sg:pub.10.1186/1471-2156-12-89
    27 schema:datePublished 2014-06-29
    28 schema:datePublishedReg 2014-06-29
    29 schema:description A recombinant inbred population developed from a cross between high-yielding lowland rice (<i>Oryza sativa</i> L.) subspecies <i>indica</i> cv. IR64 and upland tropical rice subspecies <i>japonica</i> cv. Cabacu was used to identify quantitative trait loci (QTLs) for grain yield (GY) and component traits under reproductive-stage drought stress. One hundred fifty-four lines were grown in field trials in Indonesia under aerobic conditions by giving surface irrigation to field capacity every 4 days. Water stress was imposed for a period of 15 days during pre-flowering by withholding irrigation at 65 days after seeding. Leaf rolling was scored at the end of the stress period and eight agronomic traits were evaluated after recovery. The population was also evaluated for root pulling force, and a total of 201 single nucleotide polymorphism markers were used to construct the molecular genetic linkage map and QTL mapping. A QTL for GY under drought stress was identified in a region close to the <i>sd1</i> locus on chromosome 1. QTL meta-analysis across diverse populations showed that this QTL was conserved across genetic backgrounds and co-localized with QTLs for leaf rolling and osmotic adjustment (OA). A QTL for percent seed set and grains per panicle under drought stress was identified on chromosome 8 in the same region as a QTL for OA previously identified in three different populations.
    30 schema:genre article
    31 schema:inLanguage en
    32 schema:isAccessibleForFree true
    33 schema:isPartOf N501ffb4086cb4380846356720c389a5f
    34 Nd3072ffdc32c465a969e29b8a8288fb1
    35 sg:journal.1114043
    36 schema:keywords Cabacu
    37 IR64
    38 Indonesia
    39 QTL mapping
    40 adjustment
    41 aerobic conditions
    42 agronomic traits
    43 background
    44 capacity
    45 chromosome 1
    46 chromosome 8
    47 component traits
    48 conditions
    49 cross
    50 cv
    51 days
    52 different populations
    53 diverse populations
    54 drought stress
    55 end
    56 field capacity
    57 field trials
    58 force
    59 genetic background
    60 genetic linkage map
    61 grain yield
    62 grains
    63 irrigation
    64 leaf rolling
    65 lines
    66 linkage map
    67 loci
    68 lowland rice
    69 mapping
    70 maps
    71 markers
    72 molecular genetic linkage map
    73 nucleotide polymorphism markers
    74 osmotic adjustment
    75 panicle
    76 percent seed set
    77 period
    78 polymorphism markers
    79 population
    80 quantitative trait loci
    81 recombinants
    82 recovery
    83 region
    84 reproductive stage drought stress
    85 rice
    86 rice populations
    87 rolling
    88 roots
    89 same region
    90 seed set
    91 set
    92 single nucleotide polymorphism (SNP) markers
    93 stress
    94 stress period
    95 surface irrigation
    96 total
    97 trait loci
    98 traits
    99 trials
    100 tropical rice
    101 upland rice populations
    102 upland tropical rice
    103 water stress
    104 yield
    105 schema:name Meta-analysis of quantitative trait loci for grain yield and component traits under reproductive-stage drought stress in an upland rice population
    106 schema:pagination 283-295
    107 schema:productId N8cfbd6f1174844cebcf03a5bc529a150
    108 Na8fe51d93dbc40fe8b63c23c63d42519
    109 Nff6c65da6f774568acbaf604268bacfd
    110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044444381
    111 https://doi.org/10.1007/s11032-013-0012-0
    112 schema:sdDatePublished 2021-11-01T18:22
    113 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    114 schema:sdPublisher N37d832e6015747359f2a16e9e1176e97
    115 schema:url https://doi.org/10.1007/s11032-013-0012-0
    116 sgo:license sg:explorer/license/
    117 sgo:sdDataset articles
    118 rdf:type schema:ScholarlyArticle
    119 N37d832e6015747359f2a16e9e1176e97 schema:name Springer Nature - SN SciGraph project
    120 rdf:type schema:Organization
    121 N3e55ea185d3c47909aab0a33cf4219bb rdf:first sg:person.013747407011.18
    122 rdf:rest N9c1f3c614f6443e38fe3f6399a1a07fb
    123 N501ffb4086cb4380846356720c389a5f schema:volumeNumber 34
    124 rdf:type schema:PublicationVolume
    125 N7f41e902a50e40a9ae8711bd2809a7bf rdf:first sg:person.01233652213.76
    126 rdf:rest N8482f0d69fa94f999ce507253ef7760d
    127 N8482f0d69fa94f999ce507253ef7760d rdf:first sg:person.015534617641.36
    128 rdf:rest Nb42725f5c9b3415a997932b3060a0308
    129 N8cfbd6f1174844cebcf03a5bc529a150 schema:name dimensions_id
    130 schema:value pub.1044444381
    131 rdf:type schema:PropertyValue
    132 N9c1f3c614f6443e38fe3f6399a1a07fb rdf:first sg:person.010441106216.55
    133 rdf:rest N7f41e902a50e40a9ae8711bd2809a7bf
    134 Na8fe51d93dbc40fe8b63c23c63d42519 schema:name doi
    135 schema:value 10.1007/s11032-013-0012-0
    136 rdf:type schema:PropertyValue
    137 Nb42725f5c9b3415a997932b3060a0308 rdf:first sg:person.0723055744.07
    138 rdf:rest Nc94bb9c714884fb787d2d3bec7b43865
    139 Nc94bb9c714884fb787d2d3bec7b43865 rdf:first sg:person.01344430566.76
    140 rdf:rest rdf:nil
    141 Nd3072ffdc32c465a969e29b8a8288fb1 schema:issueNumber 2
    142 rdf:type schema:PublicationIssue
    143 Ne17778885ab34c26b52c1db78067c038 rdf:first sg:person.01340051775.84
    144 rdf:rest N3e55ea185d3c47909aab0a33cf4219bb
    145 Nff6c65da6f774568acbaf604268bacfd schema:name pubmed_id
    146 schema:value 25076836
    147 rdf:type schema:PropertyValue
    148 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    149 schema:name Biological Sciences
    150 rdf:type schema:DefinedTerm
    151 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    152 schema:name Genetics
    153 rdf:type schema:DefinedTerm
    154 sg:grant.3103877 http://pending.schema.org/fundedItem sg:pub.10.1007/s11032-013-0012-0
    155 rdf:type schema:MonetaryGrant
    156 sg:grant.8786047 http://pending.schema.org/fundedItem sg:pub.10.1007/s11032-013-0012-0
    157 rdf:type schema:MonetaryGrant
    158 sg:journal.1114043 schema:issn 1380-3743
    159 1572-9788
    160 schema:name Molecular Breeding
    161 schema:publisher Springer Nature
    162 rdf:type schema:Periodical
    163 sg:person.010441106216.55 schema:affiliation grid-institutes:None
    164 schema:familyName Prasetiyono
    165 schema:givenName Joko
    166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010441106216.55
    167 rdf:type schema:Person
    168 sg:person.01233652213.76 schema:affiliation grid-institutes:grid.419387.0
    169 schema:familyName Thomson
    170 schema:givenName Michael J.
    171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01233652213.76
    172 rdf:type schema:Person
    173 sg:person.01340051775.84 schema:affiliation grid-institutes:None
    174 schema:familyName Trijatmiko
    175 schema:givenName Kurniawan R.
    176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01340051775.84
    177 rdf:type schema:Person
    178 sg:person.01344430566.76 schema:affiliation grid-institutes:grid.438526.e
    179 schema:familyName Pereira
    180 schema:givenName Andy
    181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01344430566.76
    182 rdf:type schema:Person
    183 sg:person.013747407011.18 schema:affiliation grid-institutes:grid.8570.a
    184 schema:familyName Supriyanta
    185 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013747407011.18
    186 rdf:type schema:Person
    187 sg:person.015534617641.36 schema:affiliation grid-institutes:grid.419387.0
    188 schema:familyName Cruz
    189 schema:givenName Casiana M. Vera
    190 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015534617641.36
    191 rdf:type schema:Person
    192 sg:person.0723055744.07 schema:affiliation grid-institutes:None
    193 schema:familyName Moeljopawiro
    194 schema:givenName Sugiono
    195 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0723055744.07
    196 rdf:type schema:Person
    197 sg:pub.10.1007/bf00033989 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032472736
    198 https://doi.org/10.1007/bf00033989
    199 rdf:type schema:CreativeWork
    200 sg:pub.10.1007/bf00222910 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025892414
    201 https://doi.org/10.1007/bf00222910
    202 rdf:type schema:CreativeWork
    203 sg:pub.10.1007/bf00273666 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001248404
    204 https://doi.org/10.1007/bf00273666
    205 rdf:type schema:CreativeWork
    206 sg:pub.10.1007/bf02221396 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004095276
    207 https://doi.org/10.1007/bf02221396
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1007/s00122-003-1360-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020312067
    210 https://doi.org/10.1007/s00122-003-1360-7
    211 rdf:type schema:CreativeWork
    212 sg:pub.10.1007/s00122-004-1731-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041889798
    213 https://doi.org/10.1007/s00122-004-1731-8
    214 rdf:type schema:CreativeWork
    215 sg:pub.10.1007/s00122-005-0040-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010669966
    216 https://doi.org/10.1007/s00122-005-0040-1
    217 rdf:type schema:CreativeWork
    218 sg:pub.10.1007/s00122-005-0099-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008171930
    219 https://doi.org/10.1007/s00122-005-0099-8
    220 rdf:type schema:CreativeWork
    221 sg:pub.10.1007/s00122-009-1168-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036907094
    222 https://doi.org/10.1007/s00122-009-1168-1
    223 rdf:type schema:CreativeWork
    224 sg:pub.10.1007/s00122-012-2033-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020561901
    225 https://doi.org/10.1007/s00122-012-2033-1
    226 rdf:type schema:CreativeWork
    227 sg:pub.10.1007/s001220000534 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042424986
    228 https://doi.org/10.1007/s001220000534
    229 rdf:type schema:CreativeWork
    230 sg:pub.10.1007/s001220051424 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039022864
    231 https://doi.org/10.1007/s001220051424
    232 rdf:type schema:CreativeWork
    233 sg:pub.10.1007/s00438-004-1025-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053602680
    234 https://doi.org/10.1007/s00438-004-1025-5
    235 rdf:type schema:CreativeWork
    236 sg:pub.10.1007/s004380050355 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015260406
    237 https://doi.org/10.1007/s004380050355
    238 rdf:type schema:CreativeWork
    239 sg:pub.10.1007/s11032-011-9663-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1030222899
    240 https://doi.org/10.1007/s11032-011-9663-x
    241 rdf:type schema:CreativeWork
    242 sg:pub.10.1007/s12284-008-9004-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022052441
    243 https://doi.org/10.1007/s12284-008-9004-9
    244 rdf:type schema:CreativeWork
    245 sg:pub.10.1023/a:1009652326121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022475844
    246 https://doi.org/10.1023/a:1009652326121
    247 rdf:type schema:CreativeWork
    248 sg:pub.10.1023/a:1014805625790 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049875575
    249 https://doi.org/10.1023/a:1014805625790
    250 rdf:type schema:CreativeWork
    251 sg:pub.10.1038/35093585 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023409654
    252 https://doi.org/10.1038/35093585
    253 rdf:type schema:CreativeWork
    254 sg:pub.10.1038/hdy.1996.117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036015641
    255 https://doi.org/10.1038/hdy.1996.117
    256 rdf:type schema:CreativeWork
    257 sg:pub.10.1038/nature03895 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034843726
    258 https://doi.org/10.1038/nature03895
    259 rdf:type schema:CreativeWork
    260 sg:pub.10.1038/nature08258 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050845915
    261 https://doi.org/10.1038/nature08258
    262 rdf:type schema:CreativeWork
    263 sg:pub.10.1186/1471-2156-12-89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006135375
    264 https://doi.org/10.1186/1471-2156-12-89
    265 rdf:type schema:CreativeWork
    266 grid-institutes:None schema:alternateName Indonesian Center for Agricultural Biotechnology and Genetic Resources Research and Development, Jl. Tentara Pelajar 3A, Bogor, 16111 Indonesia
    267 schema:name Indonesian Center for Agricultural Biotechnology and Genetic Resources Research and Development, Jl. Tentara Pelajar 3A, Bogor, 16111 Indonesia
    268 rdf:type schema:Organization
    269 grid-institutes:grid.419387.0 schema:alternateName International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
    270 schema:name International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
    271 rdf:type schema:Organization
    272 grid-institutes:grid.438526.e schema:alternateName Virginia Bioinformatics Institute, Virginia Polytechnic and State University, Blacksburg, VA USA
    273 schema:name Crop, Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR USA
    274 Virginia Bioinformatics Institute, Virginia Polytechnic and State University, Blacksburg, VA USA
    275 rdf:type schema:Organization
    276 grid-institutes:grid.8570.a schema:alternateName Banguntapan Field Station, Faculty of Agriculture, Gadjah Mada University, Jl. Socio Justicia Bulaksumur, Yogyakarta, 55281 Indonesia
    277 schema:name Banguntapan Field Station, Faculty of Agriculture, Gadjah Mada University, Jl. Socio Justicia Bulaksumur, Yogyakarta, 55281 Indonesia
    278 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...