Prediction of interactiveness of proteins and nucleic acids based on feature selections View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-11

AUTHORS

YouLang Yuan, XiaoHe Shi, XinLei Li, WenCong Lu, YuDong Cai, Lei Gu, Liang Liu, MinJie Li, XiangYin Kong, Meng Xing

ABSTRACT

It is important to identify which proteins can interact with nucleic acids for the purpose of protein annotation, since interactions between nucleic acids and proteins involve in numerous cellular processes such as replication, transcription, splicing, and DNA repair. This research tries to identify proteins that can interact with DNA, RNA, and rRNA, respectively. mRMR (Minimum redundancy and maximum relevance), with its elegant mathematical formulation, has been applied widely in processing biological data and feature analysis since its introduction in 2005. mRMR plus incremental feature selection (IFS) is known to be very efficient in feature selection and analysis, and able to improve both effectiveness and efficiency of a prediction model. IFS is applied to decide how many features should be selected from feature list provided by mRMR. In the end, the selected features of mRMR and IFS are further refined by a conventional feature selection method--forward feature wrapper (FFW), by reordering the features. Each protein is coded by 132 features including amino acid compositions and physicochemical properties. After the feature selection, k-Nearest Neighbor algorithm, the adopted prediction model, is trained and tested. As a result, the optimized prediction accuracies for the DNA, RNA, and rRNA are 82.0, 83.4, and 92.3%, respectively. Furthermore, the most important features that contribute to the prediction are identified and analyzed biologically. The predictor, developed for this research, is available for public access at http://chemdata.shu.edu.cn/protein_na_mrmr/. More... »

PAGES

627-633

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11030-009-9198-9

DOI

http://dx.doi.org/10.1007/s11030-009-9198-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1030307807

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/19816781


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amino Acid Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "DNA", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Forecasting", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Theoretical", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Sequence Annotation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Sequence Data", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Nucleic Acids", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Binding", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Interaction Domains and Motifs", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Protein Interaction Mapping", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "RNA", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Shanghai University", 
          "id": "https://www.grid.ac/institutes/grid.39436.3b", 
          "name": [
            "Chemical Data mining Laboratory, Department of Chemistry, College of Sciences, Shanghai University, 99 Shang-Da Road, 200444, Shanghai, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yuan", 
        "givenName": "YouLang", 
        "id": "sg:person.0770107354.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0770107354.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanghai Institutes for Biological Sciences", 
          "id": "https://www.grid.ac/institutes/grid.419092.7", 
          "name": [
            "Institute of Health Sciences, Shanghai Jiao Tong University, School of Medicine, Shanghai, People\u2019s Republic of China", 
            "Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shi", 
        "givenName": "XiaoHe", 
        "id": "sg:person.01006623757.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01006623757.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanghai Institutes for Biological Sciences", 
          "id": "https://www.grid.ac/institutes/grid.419092.7", 
          "name": [
            "Institute of Health Sciences, Shanghai Jiao Tong University, School of Medicine, Shanghai, People\u2019s Republic of China", 
            "Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "XinLei", 
        "id": "sg:person.01370777350.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01370777350.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanghai University", 
          "id": "https://www.grid.ac/institutes/grid.39436.3b", 
          "name": [
            "Chemical Data mining Laboratory, Department of Chemistry, College of Sciences, Shanghai University, 99 Shang-Da Road, 200444, Shanghai, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lu", 
        "givenName": "WenCong", 
        "id": "sg:person.01255462610.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01255462610.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanghai University", 
          "id": "https://www.grid.ac/institutes/grid.39436.3b", 
          "name": [
            "Institute of System Biology, Shanghai University, 99 Shang-Da Road, 200444, Shanghai, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cai", 
        "givenName": "YuDong", 
        "id": "sg:person.01344714423.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01344714423.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Fraunhofer Institute for Algorithms and Scientific Computing", 
          "id": "https://www.grid.ac/institutes/grid.418688.b", 
          "name": [
            "Department of Life Science Informatics, B-IT, Rheinische Friedrich-Wilhelms-University Bonn, Dahlmannstr. 2, 53113, Bonn, Germany", 
            "Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, 53754, Sankt Augustin, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gu", 
        "givenName": "Lei", 
        "id": "sg:person.01160322451.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160322451.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanghai University", 
          "id": "https://www.grid.ac/institutes/grid.39436.3b", 
          "name": [
            "Chemical Data mining Laboratory, Department of Chemistry, College of Sciences, Shanghai University, 99 Shang-Da Road, 200444, Shanghai, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liu", 
        "givenName": "Liang", 
        "id": "sg:person.01365247727.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01365247727.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanghai University", 
          "id": "https://www.grid.ac/institutes/grid.39436.3b", 
          "name": [
            "Chemical Data mining Laboratory, Department of Chemistry, College of Sciences, Shanghai University, 99 Shang-Da Road, 200444, Shanghai, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "MinJie", 
        "id": "sg:person.0763576712.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763576712.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanghai Institutes for Biological Sciences", 
          "id": "https://www.grid.ac/institutes/grid.419092.7", 
          "name": [
            "Institute of Health Sciences, Shanghai Jiao Tong University, School of Medicine, Shanghai, People\u2019s Republic of China", 
            "Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kong", 
        "givenName": "XiangYin", 
        "id": "sg:person.01000650641.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01000650641.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanghai University", 
          "id": "https://www.grid.ac/institutes/grid.39436.3b", 
          "name": [
            "Institute of System Biology, Shanghai University, 99 Shang-Da Road, 200444, Shanghai, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xing", 
        "givenName": "Meng", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.bbrc.2009.01.077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000171752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11030-008-9073-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000637526", 
          "https://doi.org/10.1007/s11030-008-9073-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pcbi.1000146", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003568294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11030-008-9085-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003826392", 
          "https://doi.org/10.1007/s11030-008-9085-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11030-009-9116-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006663841", 
          "https://doi.org/10.1007/s11030-009-9116-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.biochi.2008.03.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006876339"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0282(1997)44:2<153::aid-bip4>3.0.co;2-u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010334416"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1097-2765(04)00055-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010480057"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.285.5428.751", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013411081"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/17.3.282", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017671415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11030-009-9177-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020130648", 
          "https://doi.org/10.1007/s11030-009-9177-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11030-009-9177-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020130648", 
          "https://doi.org/10.1007/s11030-009-9177-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkg386", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020188879"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jtbi.2005.09.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021605095"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.bbrc.2008.05.143", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024740225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1097-0134(199703)27:3<329::aid-prot1>3.0.co;2-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027067931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0603673103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027478117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/btg224", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030521598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11030-008-9093-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035141809", 
          "https://doi.org/10.1007/s11030-008-9093-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.bi.59.070190.005043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035167401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkh803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035274205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1570-9639(03)00112-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036143202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0959-440x(98)80061-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037561720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11030-009-9149-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039775062", 
          "https://doi.org/10.1007/s11030-009-9149-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11030-009-9149-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039775062", 
          "https://doi.org/10.1007/s11030-009-9149-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmb.2004.05.058", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042514064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmb.2006.02.053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047979087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1586/14789450.2.5.705", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048790646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1586/14789450.2.5.705", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048790646"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/15.2.176", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051064863"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-2836(03)00031-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053502330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/pr800292w", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056294403"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/pr800717y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056294600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/t-c.1975.224110", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061456072"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tit.1967.1053964", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061646286"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2005.159", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061742820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2005.159", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061742820"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.2658053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062548945"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.278.5338.609", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062558435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2174/092986608783744234", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069158070"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4161/rna.3.3.3373", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072310326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1082424347", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1083055848", 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-11", 
    "datePublishedReg": "2010-11-01", 
    "description": "It is important to identify which proteins can interact with nucleic acids for the purpose of protein annotation, since interactions between nucleic acids and proteins involve in numerous cellular processes such as replication, transcription, splicing, and DNA repair. This research tries to identify proteins that can interact with DNA, RNA, and rRNA, respectively. mRMR (Minimum redundancy and maximum relevance), with its elegant mathematical formulation, has been applied widely in processing biological data and feature analysis since its introduction in 2005. mRMR plus incremental feature selection (IFS) is known to be very efficient in feature selection and analysis, and able to improve both effectiveness and efficiency of a prediction model. IFS is applied to decide how many features should be selected from feature list provided by mRMR. In the end, the selected features of mRMR and IFS are further refined by a conventional feature selection method--forward feature wrapper (FFW), by reordering the features. Each protein is coded by 132 features including amino acid compositions and physicochemical properties. After the feature selection, k-Nearest Neighbor algorithm, the adopted prediction model, is trained and tested. As a result, the optimized prediction accuracies for the DNA, RNA, and rRNA are 82.0, 83.4, and 92.3%, respectively. Furthermore, the most important features that contribute to the prediction are identified and analyzed biologically. The predictor, developed for this research, is available for public access at http://chemdata.shu.edu.cn/protein_na_mrmr/.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11030-009-9198-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1114785", 
        "issn": [
          "1381-1991", 
          "1573-501X"
        ], 
        "name": "Molecular Diversity", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "14"
      }
    ], 
    "name": "Prediction of interactiveness of proteins and nucleic acids based on feature selections", 
    "pagination": "627-633", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "906126f06bec251a9fb0c3c979f598d653fb6b689253541abf8fee2c25b82d8a"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "19816781"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "9516534"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11030-009-9198-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1030307807"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11030-009-9198-9", 
      "https://app.dimensions.ai/details/publication/pub.1030307807"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000346_0000000346/records_99812_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11030-009-9198-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11030-009-9198-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11030-009-9198-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11030-009-9198-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11030-009-9198-9'


 

This table displays all metadata directly associated to this object as RDF triples.

317 TRIPLES      21 PREDICATES      82 URIs      35 LITERALS      23 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11030-009-9198-9 schema:about N08b9f38fba304c749928d108c8d9b350
2 N1083c9e256a04f45aeb3e0e2522ae9a4
3 N10872dc7db424a85ae1ce4d180a0db8f
4 N11877911350146768113033a4a55afcc
5 N841b3b2c2d964dc29e2488aa3d6a5c7a
6 Na1396f8e32e84943b71d30e2cd6337db
7 Nb3d94723448c45469c728b942abc8f48
8 Nb556149c2b6b43f6b596e6f49626f4a9
9 Nb84b761eb370411e82146b29964dacd1
10 Nc98ba267808141d6960509fd17545831
11 Ne8f0ec9daa224c3db76f1a1a548b1f9d
12 Neb33630c7b0a4848a8da2f2b7ea21372
13 Nf37db90d77f7472da3728c892f04f8a8
14 Nf5c8b33702c44450998b9e5aafe68904
15 anzsrc-for:06
16 anzsrc-for:0604
17 schema:author Nf0aff7a859194f7cb25d898375c7336f
18 schema:citation sg:pub.10.1007/s11030-008-9073-0
19 sg:pub.10.1007/s11030-008-9085-9
20 sg:pub.10.1007/s11030-008-9093-9
21 sg:pub.10.1007/s11030-009-9116-1
22 sg:pub.10.1007/s11030-009-9149-5
23 sg:pub.10.1007/s11030-009-9177-1
24 https://app.dimensions.ai/details/publication/pub.1082424347
25 https://app.dimensions.ai/details/publication/pub.1083055848
26 https://doi.org/10.1002/(sici)1097-0134(199703)27:3<329::aid-prot1>3.0.co;2-8
27 https://doi.org/10.1002/(sici)1097-0282(1997)44:2<153::aid-bip4>3.0.co;2-u
28 https://doi.org/10.1016/j.bbrc.2008.05.143
29 https://doi.org/10.1016/j.bbrc.2009.01.077
30 https://doi.org/10.1016/j.biochi.2008.03.012
31 https://doi.org/10.1016/j.jmb.2004.05.058
32 https://doi.org/10.1016/j.jmb.2006.02.053
33 https://doi.org/10.1016/j.jtbi.2005.09.018
34 https://doi.org/10.1016/s0022-2836(03)00031-7
35 https://doi.org/10.1016/s0959-440x(98)80061-4
36 https://doi.org/10.1016/s1097-2765(04)00055-3
37 https://doi.org/10.1016/s1570-9639(03)00112-2
38 https://doi.org/10.1021/pr800292w
39 https://doi.org/10.1021/pr800717y
40 https://doi.org/10.1073/pnas.0603673103
41 https://doi.org/10.1093/bioinformatics/15.2.176
42 https://doi.org/10.1093/bioinformatics/17.3.282
43 https://doi.org/10.1093/bioinformatics/btg224
44 https://doi.org/10.1093/nar/gkg386
45 https://doi.org/10.1093/nar/gkh803
46 https://doi.org/10.1109/t-c.1975.224110
47 https://doi.org/10.1109/tit.1967.1053964
48 https://doi.org/10.1109/tpami.2005.159
49 https://doi.org/10.1126/science.2658053
50 https://doi.org/10.1126/science.278.5338.609
51 https://doi.org/10.1126/science.285.5428.751
52 https://doi.org/10.1146/annurev.bi.59.070190.005043
53 https://doi.org/10.1371/journal.pcbi.1000146
54 https://doi.org/10.1586/14789450.2.5.705
55 https://doi.org/10.2174/092986608783744234
56 https://doi.org/10.4161/rna.3.3.3373
57 schema:datePublished 2010-11
58 schema:datePublishedReg 2010-11-01
59 schema:description It is important to identify which proteins can interact with nucleic acids for the purpose of protein annotation, since interactions between nucleic acids and proteins involve in numerous cellular processes such as replication, transcription, splicing, and DNA repair. This research tries to identify proteins that can interact with DNA, RNA, and rRNA, respectively. mRMR (Minimum redundancy and maximum relevance), with its elegant mathematical formulation, has been applied widely in processing biological data and feature analysis since its introduction in 2005. mRMR plus incremental feature selection (IFS) is known to be very efficient in feature selection and analysis, and able to improve both effectiveness and efficiency of a prediction model. IFS is applied to decide how many features should be selected from feature list provided by mRMR. In the end, the selected features of mRMR and IFS are further refined by a conventional feature selection method--forward feature wrapper (FFW), by reordering the features. Each protein is coded by 132 features including amino acid compositions and physicochemical properties. After the feature selection, k-Nearest Neighbor algorithm, the adopted prediction model, is trained and tested. As a result, the optimized prediction accuracies for the DNA, RNA, and rRNA are 82.0, 83.4, and 92.3%, respectively. Furthermore, the most important features that contribute to the prediction are identified and analyzed biologically. The predictor, developed for this research, is available for public access at http://chemdata.shu.edu.cn/protein_na_mrmr/.
60 schema:genre research_article
61 schema:inLanguage en
62 schema:isAccessibleForFree false
63 schema:isPartOf N6c668ba9cb4b4b509d5bd83d5098bdb7
64 Ne002b3110aa945be9625863674d146c9
65 sg:journal.1114785
66 schema:name Prediction of interactiveness of proteins and nucleic acids based on feature selections
67 schema:pagination 627-633
68 schema:productId N15cd9ccca36b4343bef9c9e778f36543
69 N3ba0091204dd46fbbb02003dc60ea10c
70 N831e18b5f7954740a2193b532392f38c
71 Ncb0fc6383288499781b3b727030cc22d
72 Nd10afef6195c4aa2b5b37be051a71cf3
73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030307807
74 https://doi.org/10.1007/s11030-009-9198-9
75 schema:sdDatePublished 2019-04-11T09:33
76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
77 schema:sdPublisher N9704a459b2554e94a58424ca69caa562
78 schema:url http://link.springer.com/10.1007%2Fs11030-009-9198-9
79 sgo:license sg:explorer/license/
80 sgo:sdDataset articles
81 rdf:type schema:ScholarlyArticle
82 N08b9f38fba304c749928d108c8d9b350 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
83 schema:name Computational Biology
84 rdf:type schema:DefinedTerm
85 N0a7b0a9ec5ac4e1dafa370b6ed534def rdf:first sg:person.01000650641.44
86 rdf:rest N4892fe4abc7a4160946c75dcea6a0ab9
87 N0c3bbd65acd74fd1a07e5acb89ae2bf3 rdf:first sg:person.01344714423.17
88 rdf:rest N0dfd5a23d8d943ddadf53cd8d793565a
89 N0c8d2cd7f7da44759ec62198dbdb0901 rdf:first sg:person.01365247727.31
90 rdf:rest Nda7885b1ec2243d28396b2d32b3abb49
91 N0dfd5a23d8d943ddadf53cd8d793565a rdf:first sg:person.01160322451.91
92 rdf:rest N0c8d2cd7f7da44759ec62198dbdb0901
93 N1083c9e256a04f45aeb3e0e2522ae9a4 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
94 schema:name Amino Acid Sequence
95 rdf:type schema:DefinedTerm
96 N10872dc7db424a85ae1ce4d180a0db8f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
97 schema:name Protein Interaction Mapping
98 rdf:type schema:DefinedTerm
99 N11877911350146768113033a4a55afcc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Proteins
101 rdf:type schema:DefinedTerm
102 N15cd9ccca36b4343bef9c9e778f36543 schema:name readcube_id
103 schema:value 906126f06bec251a9fb0c3c979f598d653fb6b689253541abf8fee2c25b82d8a
104 rdf:type schema:PropertyValue
105 N2dfdcb4655c04b4c87485f6f610b8b5a rdf:first sg:person.01370777350.35
106 rdf:rest Nf51ab1efcfcd48078bb0021f90dc1f25
107 N3ba0091204dd46fbbb02003dc60ea10c schema:name pubmed_id
108 schema:value 19816781
109 rdf:type schema:PropertyValue
110 N4892fe4abc7a4160946c75dcea6a0ab9 rdf:first N601860d60154417880603822bcbbe22d
111 rdf:rest rdf:nil
112 N49bf8e9bf5654b70be86a04e4cbb9a86 rdf:first sg:person.01006623757.23
113 rdf:rest N2dfdcb4655c04b4c87485f6f610b8b5a
114 N601860d60154417880603822bcbbe22d schema:affiliation https://www.grid.ac/institutes/grid.39436.3b
115 schema:familyName Xing
116 schema:givenName Meng
117 rdf:type schema:Person
118 N6c668ba9cb4b4b509d5bd83d5098bdb7 schema:issueNumber 4
119 rdf:type schema:PublicationIssue
120 N831e18b5f7954740a2193b532392f38c schema:name doi
121 schema:value 10.1007/s11030-009-9198-9
122 rdf:type schema:PropertyValue
123 N841b3b2c2d964dc29e2488aa3d6a5c7a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name RNA
125 rdf:type schema:DefinedTerm
126 N9704a459b2554e94a58424ca69caa562 schema:name Springer Nature - SN SciGraph project
127 rdf:type schema:Organization
128 Na1396f8e32e84943b71d30e2cd6337db schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
129 schema:name Models, Theoretical
130 rdf:type schema:DefinedTerm
131 Nb3d94723448c45469c728b942abc8f48 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
132 schema:name Molecular Sequence Annotation
133 rdf:type schema:DefinedTerm
134 Nb556149c2b6b43f6b596e6f49626f4a9 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
135 schema:name Molecular Sequence Data
136 rdf:type schema:DefinedTerm
137 Nb84b761eb370411e82146b29964dacd1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Nucleic Acids
139 rdf:type schema:DefinedTerm
140 Nc98ba267808141d6960509fd17545831 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Algorithms
142 rdf:type schema:DefinedTerm
143 Ncb0fc6383288499781b3b727030cc22d schema:name dimensions_id
144 schema:value pub.1030307807
145 rdf:type schema:PropertyValue
146 Nd10afef6195c4aa2b5b37be051a71cf3 schema:name nlm_unique_id
147 schema:value 9516534
148 rdf:type schema:PropertyValue
149 Nda7885b1ec2243d28396b2d32b3abb49 rdf:first sg:person.0763576712.18
150 rdf:rest N0a7b0a9ec5ac4e1dafa370b6ed534def
151 Ne002b3110aa945be9625863674d146c9 schema:volumeNumber 14
152 rdf:type schema:PublicationVolume
153 Ne8f0ec9daa224c3db76f1a1a548b1f9d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Forecasting
155 rdf:type schema:DefinedTerm
156 Neb33630c7b0a4848a8da2f2b7ea21372 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
157 schema:name DNA
158 rdf:type schema:DefinedTerm
159 Nf0aff7a859194f7cb25d898375c7336f rdf:first sg:person.0770107354.46
160 rdf:rest N49bf8e9bf5654b70be86a04e4cbb9a86
161 Nf37db90d77f7472da3728c892f04f8a8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
162 schema:name Protein Interaction Domains and Motifs
163 rdf:type schema:DefinedTerm
164 Nf51ab1efcfcd48078bb0021f90dc1f25 rdf:first sg:person.01255462610.27
165 rdf:rest N0c3bbd65acd74fd1a07e5acb89ae2bf3
166 Nf5c8b33702c44450998b9e5aafe68904 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
167 schema:name Protein Binding
168 rdf:type schema:DefinedTerm
169 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
170 schema:name Biological Sciences
171 rdf:type schema:DefinedTerm
172 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
173 schema:name Genetics
174 rdf:type schema:DefinedTerm
175 sg:journal.1114785 schema:issn 1381-1991
176 1573-501X
177 schema:name Molecular Diversity
178 rdf:type schema:Periodical
179 sg:person.01000650641.44 schema:affiliation https://www.grid.ac/institutes/grid.419092.7
180 schema:familyName Kong
181 schema:givenName XiangYin
182 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01000650641.44
183 rdf:type schema:Person
184 sg:person.01006623757.23 schema:affiliation https://www.grid.ac/institutes/grid.419092.7
185 schema:familyName Shi
186 schema:givenName XiaoHe
187 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01006623757.23
188 rdf:type schema:Person
189 sg:person.01160322451.91 schema:affiliation https://www.grid.ac/institutes/grid.418688.b
190 schema:familyName Gu
191 schema:givenName Lei
192 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01160322451.91
193 rdf:type schema:Person
194 sg:person.01255462610.27 schema:affiliation https://www.grid.ac/institutes/grid.39436.3b
195 schema:familyName Lu
196 schema:givenName WenCong
197 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01255462610.27
198 rdf:type schema:Person
199 sg:person.01344714423.17 schema:affiliation https://www.grid.ac/institutes/grid.39436.3b
200 schema:familyName Cai
201 schema:givenName YuDong
202 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01344714423.17
203 rdf:type schema:Person
204 sg:person.01365247727.31 schema:affiliation https://www.grid.ac/institutes/grid.39436.3b
205 schema:familyName Liu
206 schema:givenName Liang
207 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01365247727.31
208 rdf:type schema:Person
209 sg:person.01370777350.35 schema:affiliation https://www.grid.ac/institutes/grid.419092.7
210 schema:familyName Li
211 schema:givenName XinLei
212 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01370777350.35
213 rdf:type schema:Person
214 sg:person.0763576712.18 schema:affiliation https://www.grid.ac/institutes/grid.39436.3b
215 schema:familyName Li
216 schema:givenName MinJie
217 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0763576712.18
218 rdf:type schema:Person
219 sg:person.0770107354.46 schema:affiliation https://www.grid.ac/institutes/grid.39436.3b
220 schema:familyName Yuan
221 schema:givenName YouLang
222 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0770107354.46
223 rdf:type schema:Person
224 sg:pub.10.1007/s11030-008-9073-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000637526
225 https://doi.org/10.1007/s11030-008-9073-0
226 rdf:type schema:CreativeWork
227 sg:pub.10.1007/s11030-008-9085-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003826392
228 https://doi.org/10.1007/s11030-008-9085-9
229 rdf:type schema:CreativeWork
230 sg:pub.10.1007/s11030-008-9093-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035141809
231 https://doi.org/10.1007/s11030-008-9093-9
232 rdf:type schema:CreativeWork
233 sg:pub.10.1007/s11030-009-9116-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006663841
234 https://doi.org/10.1007/s11030-009-9116-1
235 rdf:type schema:CreativeWork
236 sg:pub.10.1007/s11030-009-9149-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039775062
237 https://doi.org/10.1007/s11030-009-9149-5
238 rdf:type schema:CreativeWork
239 sg:pub.10.1007/s11030-009-9177-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020130648
240 https://doi.org/10.1007/s11030-009-9177-1
241 rdf:type schema:CreativeWork
242 https://app.dimensions.ai/details/publication/pub.1082424347 schema:CreativeWork
243 https://app.dimensions.ai/details/publication/pub.1083055848 schema:CreativeWork
244 https://doi.org/10.1002/(sici)1097-0134(199703)27:3<329::aid-prot1>3.0.co;2-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027067931
245 rdf:type schema:CreativeWork
246 https://doi.org/10.1002/(sici)1097-0282(1997)44:2<153::aid-bip4>3.0.co;2-u schema:sameAs https://app.dimensions.ai/details/publication/pub.1010334416
247 rdf:type schema:CreativeWork
248 https://doi.org/10.1016/j.bbrc.2008.05.143 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024740225
249 rdf:type schema:CreativeWork
250 https://doi.org/10.1016/j.bbrc.2009.01.077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000171752
251 rdf:type schema:CreativeWork
252 https://doi.org/10.1016/j.biochi.2008.03.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006876339
253 rdf:type schema:CreativeWork
254 https://doi.org/10.1016/j.jmb.2004.05.058 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042514064
255 rdf:type schema:CreativeWork
256 https://doi.org/10.1016/j.jmb.2006.02.053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047979087
257 rdf:type schema:CreativeWork
258 https://doi.org/10.1016/j.jtbi.2005.09.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021605095
259 rdf:type schema:CreativeWork
260 https://doi.org/10.1016/s0022-2836(03)00031-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053502330
261 rdf:type schema:CreativeWork
262 https://doi.org/10.1016/s0959-440x(98)80061-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037561720
263 rdf:type schema:CreativeWork
264 https://doi.org/10.1016/s1097-2765(04)00055-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010480057
265 rdf:type schema:CreativeWork
266 https://doi.org/10.1016/s1570-9639(03)00112-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036143202
267 rdf:type schema:CreativeWork
268 https://doi.org/10.1021/pr800292w schema:sameAs https://app.dimensions.ai/details/publication/pub.1056294403
269 rdf:type schema:CreativeWork
270 https://doi.org/10.1021/pr800717y schema:sameAs https://app.dimensions.ai/details/publication/pub.1056294600
271 rdf:type schema:CreativeWork
272 https://doi.org/10.1073/pnas.0603673103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027478117
273 rdf:type schema:CreativeWork
274 https://doi.org/10.1093/bioinformatics/15.2.176 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051064863
275 rdf:type schema:CreativeWork
276 https://doi.org/10.1093/bioinformatics/17.3.282 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017671415
277 rdf:type schema:CreativeWork
278 https://doi.org/10.1093/bioinformatics/btg224 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030521598
279 rdf:type schema:CreativeWork
280 https://doi.org/10.1093/nar/gkg386 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020188879
281 rdf:type schema:CreativeWork
282 https://doi.org/10.1093/nar/gkh803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035274205
283 rdf:type schema:CreativeWork
284 https://doi.org/10.1109/t-c.1975.224110 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061456072
285 rdf:type schema:CreativeWork
286 https://doi.org/10.1109/tit.1967.1053964 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061646286
287 rdf:type schema:CreativeWork
288 https://doi.org/10.1109/tpami.2005.159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742820
289 rdf:type schema:CreativeWork
290 https://doi.org/10.1126/science.2658053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062548945
291 rdf:type schema:CreativeWork
292 https://doi.org/10.1126/science.278.5338.609 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062558435
293 rdf:type schema:CreativeWork
294 https://doi.org/10.1126/science.285.5428.751 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013411081
295 rdf:type schema:CreativeWork
296 https://doi.org/10.1146/annurev.bi.59.070190.005043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035167401
297 rdf:type schema:CreativeWork
298 https://doi.org/10.1371/journal.pcbi.1000146 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003568294
299 rdf:type schema:CreativeWork
300 https://doi.org/10.1586/14789450.2.5.705 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048790646
301 rdf:type schema:CreativeWork
302 https://doi.org/10.2174/092986608783744234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069158070
303 rdf:type schema:CreativeWork
304 https://doi.org/10.4161/rna.3.3.3373 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072310326
305 rdf:type schema:CreativeWork
306 https://www.grid.ac/institutes/grid.39436.3b schema:alternateName Shanghai University
307 schema:name Chemical Data mining Laboratory, Department of Chemistry, College of Sciences, Shanghai University, 99 Shang-Da Road, 200444, Shanghai, People’s Republic of China
308 Institute of System Biology, Shanghai University, 99 Shang-Da Road, 200444, Shanghai, People’s Republic of China
309 rdf:type schema:Organization
310 https://www.grid.ac/institutes/grid.418688.b schema:alternateName Fraunhofer Institute for Algorithms and Scientific Computing
311 schema:name Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, 53754, Sankt Augustin, Germany
312 Department of Life Science Informatics, B-IT, Rheinische Friedrich-Wilhelms-University Bonn, Dahlmannstr. 2, 53113, Bonn, Germany
313 rdf:type schema:Organization
314 https://www.grid.ac/institutes/grid.419092.7 schema:alternateName Shanghai Institutes for Biological Sciences
315 schema:name Institute of Health Sciences, Shanghai Jiao Tong University, School of Medicine, Shanghai, People’s Republic of China
316 Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China
317 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...