Computer Simulation of Double-Threaded Rolling in Production of Grinding Balls with a Diameter of 100 mm from Alloy Steels View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-05

AUTHORS

D. L. Shvarts, I. K. Galim’yanov, A. A. Semenov

ABSTRACT

At the moment, two-way rolls are used when rolling balls with a nominal diameter of 100 mm. In the process of rolling balls, due to the use of two-pass calibration, an increased vertical angle of inclination of the rolls is used. When working at such angles, the tangential stresses increase. The production of balls with a diameter of 100 mm on rolls with two-pass calibration with increased wear of the surface of the edges leads to the appearance of characteristic defects on the surface of the balls. This article presents a simulation of the ball rolling process, an analysis of the stress-strain state of the rolling process is carried out. The SSA calculation of the current calibration of rolls for rolling grinding balls with a diameter of 100 mm was carried out in order to analyze and compare with the existing rolling technology. According to the simulation results, it was found that when using the calibration of rolls with a constant step of cutting edges, in general, there is a fairly high level of stress throughout the entire volume. More... »

PAGES

96-103

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11015-022-01303-4

DOI

http://dx.doi.org/10.1007/s11015-022-01303-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1149154781


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ural Federal University named after the first President of Russia B. N. Yeltsin Russia, Ekaterinburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.412761.7", 
          "name": [
            "Ural Federal University named after the first President of Russia B. N. Yeltsin Russia, Ekaterinburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shvarts", 
        "givenName": "D. L.", 
        "id": "sg:person.016633212465.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016633212465.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "JSC EVRAZ Nizhniy Tagil Iron and Steel Works, Nizhniy Tagil, Russia", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "JSC EVRAZ Nizhniy Tagil Iron and Steel Works, Nizhniy Tagil, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Galim\u2019yanov", 
        "givenName": "I. K.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "\u201cTESIS\u201d LLC, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "\u201cTESIS\u201d LLC, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Semenov", 
        "givenName": "A. A.", 
        "id": "sg:person.014136371674.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014136371674.14"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11465-018-0480-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099695918", 
          "https://doi.org/10.1007/s11465-018-0480-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11015-020-01019-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1131162612", 
          "https://doi.org/10.1007/s11015-020-01019-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/j.acme.2013.07.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045828835", 
          "https://doi.org/10.1016/j.acme.2013.07.004"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-05", 
    "datePublishedReg": "2022-05-01", 
    "description": "At the moment, two-way rolls are used when rolling balls with a nominal diameter of 100 mm. In the process of rolling balls, due to the use of two-pass calibration, an increased vertical angle of inclination of the rolls is used. When working at such angles, the tangential stresses increase. The production of balls with a diameter of 100 mm on rolls with two-pass calibration with increased wear of the surface of the edges leads to the appearance of characteristic defects on the surface of the balls. This article presents a simulation of the ball rolling process, an analysis of the stress-strain state of the rolling process is carried out. The SSA calculation of the current calibration of rolls for rolling grinding balls with a diameter of 100 mm was carried out in order to analyze and compare with the existing rolling technology. According to the simulation results, it was found that when using the calibration of rolls with a constant step of cutting edges, in general, there is a fairly high level of stress throughout the entire volume.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11015-022-01303-4", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136341", 
        "issn": [
          "0026-0894", 
          "1573-8892"
        ], 
        "name": "Metallurgist", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "66"
      }
    ], 
    "keywords": [
      "rolling process", 
      "stress-strain state", 
      "rolling technology", 
      "alloy steel", 
      "Grinding Balls", 
      "tangential stress", 
      "nominal diameter", 
      "simulation results", 
      "roll", 
      "entire volume", 
      "ball", 
      "current calibration", 
      "constant step", 
      "computer simulations", 
      "calibration", 
      "simulations", 
      "characteristic defects", 
      "diameter", 
      "surface", 
      "steel", 
      "rolling", 
      "vertical angle", 
      "wear", 
      "angle", 
      "process", 
      "stress", 
      "edge", 
      "such angles", 
      "technology", 
      "inclination", 
      "calculations", 
      "production", 
      "defects", 
      "order", 
      "step", 
      "volume", 
      "results", 
      "moment", 
      "use", 
      "analysis", 
      "state", 
      "appearance", 
      "article", 
      "levels", 
      "high levels"
    ], 
    "name": "Computer Simulation of Double-Threaded Rolling in Production of Grinding Balls with a Diameter of 100 mm from Alloy Steels", 
    "pagination": "96-103", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1149154781"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11015-022-01303-4"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11015-022-01303-4", 
      "https://app.dimensions.ai/details/publication/pub.1149154781"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T16:07", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_938.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11015-022-01303-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11015-022-01303-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11015-022-01303-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11015-022-01303-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11015-022-01303-4'


 

This table displays all metadata directly associated to this object as RDF triples.

132 TRIPLES      21 PREDICATES      72 URIs      61 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11015-022-01303-4 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nb32bb0d60db8471eafdcc9eaacf564a4
4 schema:citation sg:pub.10.1007/s11015-020-01019-3
5 sg:pub.10.1007/s11465-018-0480-3
6 sg:pub.10.1016/j.acme.2013.07.004
7 schema:datePublished 2022-05
8 schema:datePublishedReg 2022-05-01
9 schema:description At the moment, two-way rolls are used when rolling balls with a nominal diameter of 100 mm. In the process of rolling balls, due to the use of two-pass calibration, an increased vertical angle of inclination of the rolls is used. When working at such angles, the tangential stresses increase. The production of balls with a diameter of 100 mm on rolls with two-pass calibration with increased wear of the surface of the edges leads to the appearance of characteristic defects on the surface of the balls. This article presents a simulation of the ball rolling process, an analysis of the stress-strain state of the rolling process is carried out. The SSA calculation of the current calibration of rolls for rolling grinding balls with a diameter of 100 mm was carried out in order to analyze and compare with the existing rolling technology. According to the simulation results, it was found that when using the calibration of rolls with a constant step of cutting edges, in general, there is a fairly high level of stress throughout the entire volume.
10 schema:genre article
11 schema:isAccessibleForFree false
12 schema:isPartOf N04da0262359942c1b6a048a383ad3323
13 N4a085baf25f146e9ba69121a0d34b755
14 sg:journal.1136341
15 schema:keywords Grinding Balls
16 alloy steel
17 analysis
18 angle
19 appearance
20 article
21 ball
22 calculations
23 calibration
24 characteristic defects
25 computer simulations
26 constant step
27 current calibration
28 defects
29 diameter
30 edge
31 entire volume
32 high levels
33 inclination
34 levels
35 moment
36 nominal diameter
37 order
38 process
39 production
40 results
41 roll
42 rolling
43 rolling process
44 rolling technology
45 simulation results
46 simulations
47 state
48 steel
49 step
50 stress
51 stress-strain state
52 such angles
53 surface
54 tangential stress
55 technology
56 use
57 vertical angle
58 volume
59 wear
60 schema:name Computer Simulation of Double-Threaded Rolling in Production of Grinding Balls with a Diameter of 100 mm from Alloy Steels
61 schema:pagination 96-103
62 schema:productId N62277fb8557440b49fc105cb487313a7
63 N62a19f107c89490b800c10ea01635e6f
64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1149154781
65 https://doi.org/10.1007/s11015-022-01303-4
66 schema:sdDatePublished 2022-09-02T16:07
67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
68 schema:sdPublisher N7c485d674efc4324b35aaf0f50d039f8
69 schema:url https://doi.org/10.1007/s11015-022-01303-4
70 sgo:license sg:explorer/license/
71 sgo:sdDataset articles
72 rdf:type schema:ScholarlyArticle
73 N02572c0548184f669fad82e7dbd39181 rdf:first sg:person.014136371674.14
74 rdf:rest rdf:nil
75 N04da0262359942c1b6a048a383ad3323 schema:issueNumber 1-2
76 rdf:type schema:PublicationIssue
77 N4a085baf25f146e9ba69121a0d34b755 schema:volumeNumber 66
78 rdf:type schema:PublicationVolume
79 N62277fb8557440b49fc105cb487313a7 schema:name dimensions_id
80 schema:value pub.1149154781
81 rdf:type schema:PropertyValue
82 N62a19f107c89490b800c10ea01635e6f schema:name doi
83 schema:value 10.1007/s11015-022-01303-4
84 rdf:type schema:PropertyValue
85 N7c485d674efc4324b35aaf0f50d039f8 schema:name Springer Nature - SN SciGraph project
86 rdf:type schema:Organization
87 Nb32bb0d60db8471eafdcc9eaacf564a4 rdf:first sg:person.016633212465.23
88 rdf:rest Nc84cd68f50b947c1813df70e5ccf54dd
89 Nc84cd68f50b947c1813df70e5ccf54dd rdf:first Ncbadb79074304513979fad6342066491
90 rdf:rest N02572c0548184f669fad82e7dbd39181
91 Ncbadb79074304513979fad6342066491 schema:affiliation grid-institutes:None
92 schema:familyName Galim’yanov
93 schema:givenName I. K.
94 rdf:type schema:Person
95 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
96 schema:name Engineering
97 rdf:type schema:DefinedTerm
98 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
99 schema:name Materials Engineering
100 rdf:type schema:DefinedTerm
101 sg:journal.1136341 schema:issn 0026-0894
102 1573-8892
103 schema:name Metallurgist
104 schema:publisher Springer Nature
105 rdf:type schema:Periodical
106 sg:person.014136371674.14 schema:affiliation grid-institutes:None
107 schema:familyName Semenov
108 schema:givenName A. A.
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014136371674.14
110 rdf:type schema:Person
111 sg:person.016633212465.23 schema:affiliation grid-institutes:grid.412761.7
112 schema:familyName Shvarts
113 schema:givenName D. L.
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016633212465.23
115 rdf:type schema:Person
116 sg:pub.10.1007/s11015-020-01019-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1131162612
117 https://doi.org/10.1007/s11015-020-01019-3
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/s11465-018-0480-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099695918
120 https://doi.org/10.1007/s11465-018-0480-3
121 rdf:type schema:CreativeWork
122 sg:pub.10.1016/j.acme.2013.07.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045828835
123 https://doi.org/10.1016/j.acme.2013.07.004
124 rdf:type schema:CreativeWork
125 grid-institutes:None schema:alternateName JSC EVRAZ Nizhniy Tagil Iron and Steel Works, Nizhniy Tagil, Russia
126 “TESIS” LLC, Moscow, Russia
127 schema:name JSC EVRAZ Nizhniy Tagil Iron and Steel Works, Nizhniy Tagil, Russia
128 “TESIS” LLC, Moscow, Russia
129 rdf:type schema:Organization
130 grid-institutes:grid.412761.7 schema:alternateName Ural Federal University named after the first President of Russia B. N. Yeltsin Russia, Ekaterinburg, Russia
131 schema:name Ural Federal University named after the first President of Russia B. N. Yeltsin Russia, Ekaterinburg, Russia
132 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...