Statistical thermodynamics for metaequilibrium or metastable states View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-04

AUTHORS

Andrea Carati, Alberto Maiocchi, Luigi Galgani

ABSTRACT

We show how statistical thermodynamics can be formulated in situations of metaequilibrium or metastability (as in the cases of supercooled liquids or of glasses respectively). By analogy with phenomenological thermodynamics, the primary quantities considered are the heat Q absorbed and the work W performed by the system of interest. These are defined through the energy exchanges which occur when the system is put in contact with a thermostat and with a barostat, the whole system being dealt with as a global Hamiltonian dynamical system. The coefficients of the fundamental form δQ-δW turn out to have such expressions that the closure of the form is manifest: this gives the first principle. A further step is performed by making use of time reversibility. This provides new expressions for the coefficients, such that the second principle in the form of Clausius is also manifest. Such coefficients are expressed in terms of time-autocorrelations of suitable dynamical variables, in a way analogous to that of fluctuation dissipation theory for equilibrium states. All these results are independent of the ergodicity properties of the global dynamical system. More... »

PAGES

1295-1307

References to SciGraph publications

Journal

TITLE

Meccanica

ISSUE

6

VOLUME

52

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11012-016-0490-3

DOI

http://dx.doi.org/10.1007/s11012-016-0490-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1027254422


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Milan", 
          "id": "https://www.grid.ac/institutes/grid.4708.b", 
          "name": [
            "Department of Mathematics, Universit\u00e0 degli Studi di Milano, Via Saldini 50, 20133, Milano, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Carati", 
        "givenName": "Andrea", 
        "id": "sg:person.01364554612.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364554612.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Milan", 
          "id": "https://www.grid.ac/institutes/grid.4708.b", 
          "name": [
            "Department of Mathematics, Universit\u00e0 degli Studi di Milano, Via Saldini 50, 20133, Milano, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maiocchi", 
        "givenName": "Alberto", 
        "id": "sg:person.015366730074.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015366730074.31"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Milan", 
          "id": "https://www.grid.ac/institutes/grid.4708.b", 
          "name": [
            "Department of Mathematics, Universit\u00e0 degli Studi di Milano, Via Saldini 50, 20133, Milano, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Galgani", 
        "givenName": "Luigi", 
        "id": "sg:person.010346707747.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010346707747.76"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevb.54.15754", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002537902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.15754", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002537902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.76.022104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006323355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.76.022104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006323355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1749-6632.1980.tb29669.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010942039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/andp.19113411207", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012696738"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.2694", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031383800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.2694", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031383800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1098/rspa.2007.0304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033772022"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/andp.19173562403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036748673"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0020-7683(98)00013-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039648171"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00220-012-1522-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040875907", 
          "https://doi.org/10.1007/s00220-012-1522-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-54271-8_10", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043409012", 
          "https://doi.org/10.1007/978-3-642-54271-8_10"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cpa.21550", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050690241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.34.1631", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060540613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.34.1631", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060540613"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.54.2674", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060791653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.54.2674", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060791653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.90.010601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060826098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.90.010601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060826098"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4213/rm572", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072370278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2183/pjab1945.48.489", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1106057713"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-04", 
    "datePublishedReg": "2017-04-01", 
    "description": "We show how statistical thermodynamics can be formulated in situations of metaequilibrium or metastability (as in the cases of supercooled liquids or of glasses respectively). By analogy with phenomenological thermodynamics, the primary quantities considered are the heat Q absorbed and the work W performed by the system of interest. These are defined through the energy exchanges which occur when the system is put in contact with a thermostat and with a barostat, the whole system being dealt with as a global Hamiltonian dynamical system. The coefficients of the fundamental form \u03b4Q-\u03b4W turn out to have such expressions that the closure of the form is manifest: this gives the first principle. A further step is performed by making use of time reversibility. This provides new expressions for the coefficients, such that the second principle in the form of Clausius is also manifest. Such coefficients are expressed in terms of time-autocorrelations of suitable dynamical variables, in a way analogous to that of fluctuation dissipation theory for equilibrium states. All these results are independent of the ergodicity properties of the global dynamical system.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11012-016-0490-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1030472", 
        "issn": [
          "0025-6455", 
          "1572-9648"
        ], 
        "name": "Meccanica", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "52"
      }
    ], 
    "name": "Statistical thermodynamics for metaequilibrium or metastable states", 
    "pagination": "1295-1307", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "81d489b1b06e689dff60129c215a20c2fddc3f3640444fea6b5ad578f1356d3f"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11012-016-0490-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1027254422"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11012-016-0490-3", 
      "https://app.dimensions.ai/details/publication/pub.1027254422"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:40", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000363_0000000363/records_70053_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11012-016-0490-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11012-016-0490-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11012-016-0490-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11012-016-0490-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11012-016-0490-3'


 

This table displays all metadata directly associated to this object as RDF triples.

125 TRIPLES      21 PREDICATES      43 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11012-016-0490-3 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N6ee93df077574d6c9efefb1cbf655f0a
4 schema:citation sg:pub.10.1007/978-3-642-54271-8_10
5 sg:pub.10.1007/s00220-012-1522-z
6 https://doi.org/10.1002/andp.19113411207
7 https://doi.org/10.1002/andp.19173562403
8 https://doi.org/10.1002/cpa.21550
9 https://doi.org/10.1016/s0020-7683(98)00013-4
10 https://doi.org/10.1098/rspa.2007.0304
11 https://doi.org/10.1103/physrevb.34.1631
12 https://doi.org/10.1103/physrevb.54.15754
13 https://doi.org/10.1103/physreve.76.022104
14 https://doi.org/10.1103/physrevlett.54.2674
15 https://doi.org/10.1103/physrevlett.74.2694
16 https://doi.org/10.1103/physrevlett.90.010601
17 https://doi.org/10.1111/j.1749-6632.1980.tb29669.x
18 https://doi.org/10.2183/pjab1945.48.489
19 https://doi.org/10.4213/rm572
20 schema:datePublished 2017-04
21 schema:datePublishedReg 2017-04-01
22 schema:description We show how statistical thermodynamics can be formulated in situations of metaequilibrium or metastability (as in the cases of supercooled liquids or of glasses respectively). By analogy with phenomenological thermodynamics, the primary quantities considered are the heat Q absorbed and the work W performed by the system of interest. These are defined through the energy exchanges which occur when the system is put in contact with a thermostat and with a barostat, the whole system being dealt with as a global Hamiltonian dynamical system. The coefficients of the fundamental form δQ-δW turn out to have such expressions that the closure of the form is manifest: this gives the first principle. A further step is performed by making use of time reversibility. This provides new expressions for the coefficients, such that the second principle in the form of Clausius is also manifest. Such coefficients are expressed in terms of time-autocorrelations of suitable dynamical variables, in a way analogous to that of fluctuation dissipation theory for equilibrium states. All these results are independent of the ergodicity properties of the global dynamical system.
23 schema:genre research_article
24 schema:inLanguage en
25 schema:isAccessibleForFree true
26 schema:isPartOf Naaeaf56fdb904f459093527e113915cd
27 Nff369ddd416e4692987d1404e5cc303d
28 sg:journal.1030472
29 schema:name Statistical thermodynamics for metaequilibrium or metastable states
30 schema:pagination 1295-1307
31 schema:productId N0199f9ba934b4ea4b66c0ef28ac719ec
32 N94cbe8760e7c45c7bd642109b473e68c
33 N97ebbba77cd44f86bf991ec035092371
34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027254422
35 https://doi.org/10.1007/s11012-016-0490-3
36 schema:sdDatePublished 2019-04-11T12:40
37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
38 schema:sdPublisher N2c7193cbf0b44d3c881b9ba96bc81bd8
39 schema:url https://link.springer.com/10.1007%2Fs11012-016-0490-3
40 sgo:license sg:explorer/license/
41 sgo:sdDataset articles
42 rdf:type schema:ScholarlyArticle
43 N0199f9ba934b4ea4b66c0ef28ac719ec schema:name doi
44 schema:value 10.1007/s11012-016-0490-3
45 rdf:type schema:PropertyValue
46 N2c7193cbf0b44d3c881b9ba96bc81bd8 schema:name Springer Nature - SN SciGraph project
47 rdf:type schema:Organization
48 N6ee93df077574d6c9efefb1cbf655f0a rdf:first sg:person.01364554612.00
49 rdf:rest N8f9e09b941f94b7c9cc315870e182294
50 N72b94a5d557648729585a0b86c866256 rdf:first sg:person.010346707747.76
51 rdf:rest rdf:nil
52 N8f9e09b941f94b7c9cc315870e182294 rdf:first sg:person.015366730074.31
53 rdf:rest N72b94a5d557648729585a0b86c866256
54 N94cbe8760e7c45c7bd642109b473e68c schema:name dimensions_id
55 schema:value pub.1027254422
56 rdf:type schema:PropertyValue
57 N97ebbba77cd44f86bf991ec035092371 schema:name readcube_id
58 schema:value 81d489b1b06e689dff60129c215a20c2fddc3f3640444fea6b5ad578f1356d3f
59 rdf:type schema:PropertyValue
60 Naaeaf56fdb904f459093527e113915cd schema:issueNumber 6
61 rdf:type schema:PublicationIssue
62 Nff369ddd416e4692987d1404e5cc303d schema:volumeNumber 52
63 rdf:type schema:PublicationVolume
64 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
65 schema:name Mathematical Sciences
66 rdf:type schema:DefinedTerm
67 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
68 schema:name Pure Mathematics
69 rdf:type schema:DefinedTerm
70 sg:journal.1030472 schema:issn 0025-6455
71 1572-9648
72 schema:name Meccanica
73 rdf:type schema:Periodical
74 sg:person.010346707747.76 schema:affiliation https://www.grid.ac/institutes/grid.4708.b
75 schema:familyName Galgani
76 schema:givenName Luigi
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010346707747.76
78 rdf:type schema:Person
79 sg:person.01364554612.00 schema:affiliation https://www.grid.ac/institutes/grid.4708.b
80 schema:familyName Carati
81 schema:givenName Andrea
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01364554612.00
83 rdf:type schema:Person
84 sg:person.015366730074.31 schema:affiliation https://www.grid.ac/institutes/grid.4708.b
85 schema:familyName Maiocchi
86 schema:givenName Alberto
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015366730074.31
88 rdf:type schema:Person
89 sg:pub.10.1007/978-3-642-54271-8_10 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043409012
90 https://doi.org/10.1007/978-3-642-54271-8_10
91 rdf:type schema:CreativeWork
92 sg:pub.10.1007/s00220-012-1522-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1040875907
93 https://doi.org/10.1007/s00220-012-1522-z
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1002/andp.19113411207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012696738
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1002/andp.19173562403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036748673
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1002/cpa.21550 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050690241
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/s0020-7683(98)00013-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039648171
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1098/rspa.2007.0304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033772022
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1103/physrevb.34.1631 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060540613
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1103/physrevb.54.15754 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002537902
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1103/physreve.76.022104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006323355
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1103/physrevlett.54.2674 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060791653
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1103/physrevlett.74.2694 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031383800
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1103/physrevlett.90.010601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060826098
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1111/j.1749-6632.1980.tb29669.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1010942039
118 rdf:type schema:CreativeWork
119 https://doi.org/10.2183/pjab1945.48.489 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106057713
120 rdf:type schema:CreativeWork
121 https://doi.org/10.4213/rm572 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072370278
122 rdf:type schema:CreativeWork
123 https://www.grid.ac/institutes/grid.4708.b schema:alternateName University of Milan
124 schema:name Department of Mathematics, Università degli Studi di Milano, Via Saldini 50, 20133, Milano, Italy
125 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...