Sixty years of stochastic linearization technique View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-01

AUTHORS

Isaac Elishakoff, Stephen H. Crandall

ABSTRACT

Stochastic linearization technique is a versatile method of solving nonlinear stochastic boundary value problems. It allows obtaining estimates of the response of the system when exact solution is unavailable; in contrast to the perturbation technique, its realization does not demand smallness of the parameter; on the other hand, unlike the Monte Carlo simulation it does not involve extensive computational cost. Although its accuracy may be not very high, this is remedied by the fact that the stochastic excitation itself need not be known quite precisely. Although it was advanced about six decades ago, during which several hundreds of papers were written, its foundations, as exposed in many monographs, appear to be still attracting investigators in stochastic dynamics. This study considers the methodological and pedagogical aspects of its exposition. More... »

PAGES

299-305

References to SciGraph publications

  • 1987. Consistent and Inconsistent Higher Order Beam and Plate Theories: Some Surprising Comparisons in REFINED DYNAMICAL THEORIES OF BEAMS, PLATES AND SHELLS AND THEIR APPLICATIONS
  • 2002-01. A Galerkin Approach for Power Spectrum Determination of Nonlinear Oscillators in MECCANICA
  • 2011-12. Sixty years of solid mechanics in MECCANICA
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11012-016-0399-x

    DOI

    http://dx.doi.org/10.1007/s11012-016-0399-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1019813619


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Statistics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Florida Atlantic University", 
              "id": "https://www.grid.ac/institutes/grid.255951.f", 
              "name": [
                "Department of Mechanical Engineering, Florida Atlantic University, 33431-0991, Boca Raton, FL, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Elishakoff", 
            "givenName": "Isaac", 
            "id": "sg:person.07413722043.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07413722043.13"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Massachusetts Institute of Technology", 
              "id": "https://www.grid.ac/institutes/grid.116068.8", 
              "name": [
                "Department of Mechanical Engineering, Massachusetts Institute of Technology, 02139, Cambridge, MA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Crandall", 
            "givenName": "Stephen H.", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.ijnonlinmec.2004.02.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000507772"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11012-011-9497-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002939696", 
              "https://doi.org/10.1007/s11012-011-9497-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/stc.129", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006364563"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/stc.129", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006364563"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0960-0779(97)00035-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009834158"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0266-8920(00)00019-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015336769"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jsvi.2000.3008", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017941799"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0266-8920(87)90025-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019236070"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0266-8920(87)90025-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019236070"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0960-0779(97)00188-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019809842"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0266-8920(93)90019-r", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028999776"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0266-8920(93)90019-r", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028999776"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0266-8920(02)00037-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029918909"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0266-8920(02)00037-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029918909"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0960-0779(97)00086-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031003106"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1019610512675", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035835306", 
              "https://doi.org/10.1023/a:1019610512675"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.mechrescom.2013.03.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045646009"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-83040-2_11", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046853946", 
              "https://doi.org/10.1007/978-3-642-83040-2_11"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jsvi.1997.1159", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048278610"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1061/(asce)0733-9399(1994)120:5(1091)", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057582660"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tct.1954.6373354", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061577021"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1115/1.1599916", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062072772"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1115/1.1896368", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062075880"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1115/1.1896368", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062075880"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1115/1.1995715", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062076472"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1115/1.1995715", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062076472"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1115/1.3119486", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062101701"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1115/1.3424308", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062120353"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1121/1.1918794", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062282813"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/058310240003200301", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063832238"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1177/058310248101300404", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063834035"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-01", 
        "datePublishedReg": "2017-01-01", 
        "description": "Stochastic linearization technique is a versatile method of solving nonlinear stochastic boundary value problems. It allows obtaining estimates of the response of the system when exact solution is unavailable; in contrast to the perturbation technique, its realization does not demand smallness of the parameter; on the other hand, unlike the Monte Carlo simulation it does not involve extensive computational cost. Although its accuracy may be not very high, this is remedied by the fact that the stochastic excitation itself need not be known quite precisely. Although it was advanced about six decades ago, during which several hundreds of papers were written, its foundations, as exposed in many monographs, appear to be still attracting investigators in stochastic dynamics. This study considers the methodological and pedagogical aspects of its exposition.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11012-016-0399-x", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1030472", 
            "issn": [
              "0025-6455", 
              "1572-9648"
            ], 
            "name": "Meccanica", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1-2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "52"
          }
        ], 
        "name": "Sixty years of stochastic linearization technique", 
        "pagination": "299-305", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "5e67290b70fd235e481f758b9ca3bb76354d0652a0386e6f857b6cbe9f53216c"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11012-016-0399-x"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1019813619"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11012-016-0399-x", 
          "https://app.dimensions.ai/details/publication/pub.1019813619"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T14:09", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000512.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs11012-016-0399-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11012-016-0399-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11012-016-0399-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11012-016-0399-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11012-016-0399-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    148 TRIPLES      21 PREDICATES      52 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11012-016-0399-x schema:about anzsrc-for:01
    2 anzsrc-for:0104
    3 schema:author N397ed0b2a5084e45b6d48841f5271fe0
    4 schema:citation sg:pub.10.1007/978-3-642-83040-2_11
    5 sg:pub.10.1007/s11012-011-9497-y
    6 sg:pub.10.1023/a:1019610512675
    7 https://doi.org/10.1002/stc.129
    8 https://doi.org/10.1006/jsvi.1997.1159
    9 https://doi.org/10.1006/jsvi.2000.3008
    10 https://doi.org/10.1016/0266-8920(87)90025-7
    11 https://doi.org/10.1016/0266-8920(93)90019-r
    12 https://doi.org/10.1016/j.ijnonlinmec.2004.02.001
    13 https://doi.org/10.1016/j.mechrescom.2013.03.003
    14 https://doi.org/10.1016/s0266-8920(00)00019-9
    15 https://doi.org/10.1016/s0266-8920(02)00037-1
    16 https://doi.org/10.1016/s0960-0779(97)00035-0
    17 https://doi.org/10.1016/s0960-0779(97)00086-6
    18 https://doi.org/10.1016/s0960-0779(97)00188-4
    19 https://doi.org/10.1061/(asce)0733-9399(1994)120:5(1091)
    20 https://doi.org/10.1109/tct.1954.6373354
    21 https://doi.org/10.1115/1.1599916
    22 https://doi.org/10.1115/1.1896368
    23 https://doi.org/10.1115/1.1995715
    24 https://doi.org/10.1115/1.3119486
    25 https://doi.org/10.1115/1.3424308
    26 https://doi.org/10.1121/1.1918794
    27 https://doi.org/10.1177/058310240003200301
    28 https://doi.org/10.1177/058310248101300404
    29 schema:datePublished 2017-01
    30 schema:datePublishedReg 2017-01-01
    31 schema:description Stochastic linearization technique is a versatile method of solving nonlinear stochastic boundary value problems. It allows obtaining estimates of the response of the system when exact solution is unavailable; in contrast to the perturbation technique, its realization does not demand smallness of the parameter; on the other hand, unlike the Monte Carlo simulation it does not involve extensive computational cost. Although its accuracy may be not very high, this is remedied by the fact that the stochastic excitation itself need not be known quite precisely. Although it was advanced about six decades ago, during which several hundreds of papers were written, its foundations, as exposed in many monographs, appear to be still attracting investigators in stochastic dynamics. This study considers the methodological and pedagogical aspects of its exposition.
    32 schema:genre research_article
    33 schema:inLanguage en
    34 schema:isAccessibleForFree true
    35 schema:isPartOf N14c05f3323bb42cb8649ab1a1fc3da50
    36 N9c3c3e9e68ae42eda6c0d991c940c0ac
    37 sg:journal.1030472
    38 schema:name Sixty years of stochastic linearization technique
    39 schema:pagination 299-305
    40 schema:productId N5d2e67be0ff54b57874bcb515a146c72
    41 Nbbacb69d0279453a940bb742310c302d
    42 Nd9581f6c56f44c4ba75ca8ec7a4568f1
    43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019813619
    44 https://doi.org/10.1007/s11012-016-0399-x
    45 schema:sdDatePublished 2019-04-10T14:09
    46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    47 schema:sdPublisher N5e80e228a37e41578d437e1f5ad4e0ee
    48 schema:url http://link.springer.com/10.1007%2Fs11012-016-0399-x
    49 sgo:license sg:explorer/license/
    50 sgo:sdDataset articles
    51 rdf:type schema:ScholarlyArticle
    52 N14c05f3323bb42cb8649ab1a1fc3da50 schema:issueNumber 1-2
    53 rdf:type schema:PublicationIssue
    54 N397ed0b2a5084e45b6d48841f5271fe0 rdf:first sg:person.07413722043.13
    55 rdf:rest N65f8bea3c5334606ad4834977fc9bb64
    56 N3cfcc17946b140abac8dfdcb4acbc89b schema:affiliation https://www.grid.ac/institutes/grid.116068.8
    57 schema:familyName Crandall
    58 schema:givenName Stephen H.
    59 rdf:type schema:Person
    60 N5d2e67be0ff54b57874bcb515a146c72 schema:name dimensions_id
    61 schema:value pub.1019813619
    62 rdf:type schema:PropertyValue
    63 N5e80e228a37e41578d437e1f5ad4e0ee schema:name Springer Nature - SN SciGraph project
    64 rdf:type schema:Organization
    65 N65f8bea3c5334606ad4834977fc9bb64 rdf:first N3cfcc17946b140abac8dfdcb4acbc89b
    66 rdf:rest rdf:nil
    67 N9c3c3e9e68ae42eda6c0d991c940c0ac schema:volumeNumber 52
    68 rdf:type schema:PublicationVolume
    69 Nbbacb69d0279453a940bb742310c302d schema:name doi
    70 schema:value 10.1007/s11012-016-0399-x
    71 rdf:type schema:PropertyValue
    72 Nd9581f6c56f44c4ba75ca8ec7a4568f1 schema:name readcube_id
    73 schema:value 5e67290b70fd235e481f758b9ca3bb76354d0652a0386e6f857b6cbe9f53216c
    74 rdf:type schema:PropertyValue
    75 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    76 schema:name Mathematical Sciences
    77 rdf:type schema:DefinedTerm
    78 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
    79 schema:name Statistics
    80 rdf:type schema:DefinedTerm
    81 sg:journal.1030472 schema:issn 0025-6455
    82 1572-9648
    83 schema:name Meccanica
    84 rdf:type schema:Periodical
    85 sg:person.07413722043.13 schema:affiliation https://www.grid.ac/institutes/grid.255951.f
    86 schema:familyName Elishakoff
    87 schema:givenName Isaac
    88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07413722043.13
    89 rdf:type schema:Person
    90 sg:pub.10.1007/978-3-642-83040-2_11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046853946
    91 https://doi.org/10.1007/978-3-642-83040-2_11
    92 rdf:type schema:CreativeWork
    93 sg:pub.10.1007/s11012-011-9497-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1002939696
    94 https://doi.org/10.1007/s11012-011-9497-y
    95 rdf:type schema:CreativeWork
    96 sg:pub.10.1023/a:1019610512675 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035835306
    97 https://doi.org/10.1023/a:1019610512675
    98 rdf:type schema:CreativeWork
    99 https://doi.org/10.1002/stc.129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006364563
    100 rdf:type schema:CreativeWork
    101 https://doi.org/10.1006/jsvi.1997.1159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048278610
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.1006/jsvi.2000.3008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017941799
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.1016/0266-8920(87)90025-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019236070
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.1016/0266-8920(93)90019-r schema:sameAs https://app.dimensions.ai/details/publication/pub.1028999776
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1016/j.ijnonlinmec.2004.02.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000507772
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1016/j.mechrescom.2013.03.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045646009
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1016/s0266-8920(00)00019-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015336769
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1016/s0266-8920(02)00037-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029918909
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1016/s0960-0779(97)00035-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009834158
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1016/s0960-0779(97)00086-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031003106
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1016/s0960-0779(97)00188-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019809842
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1061/(asce)0733-9399(1994)120:5(1091) schema:sameAs https://app.dimensions.ai/details/publication/pub.1057582660
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1109/tct.1954.6373354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061577021
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1115/1.1599916 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062072772
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1115/1.1896368 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062075880
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1115/1.1995715 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062076472
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1115/1.3119486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062101701
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1115/1.3424308 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062120353
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1121/1.1918794 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062282813
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1177/058310240003200301 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063832238
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1177/058310248101300404 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063834035
    142 rdf:type schema:CreativeWork
    143 https://www.grid.ac/institutes/grid.116068.8 schema:alternateName Massachusetts Institute of Technology
    144 schema:name Department of Mechanical Engineering, Massachusetts Institute of Technology, 02139, Cambridge, MA, USA
    145 rdf:type schema:Organization
    146 https://www.grid.ac/institutes/grid.255951.f schema:alternateName Florida Atlantic University
    147 schema:name Department of Mechanical Engineering, Florida Atlantic University, 33431-0991, Boca Raton, FL, USA
    148 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...