Rotor crack identification based on neural networks and modal data View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-02

AUTHORS

J. L. Zapico-Valle, E. Rodríguez, M. García-Diéguez, J. L. Cortizo

ABSTRACT

A model-based procedure for rotor crack localization and assessment is presented in this paper. The procedure is applied to a small-size test rig provided with a notch. Both the position and depth of the notch are estimated through a neural network on the basis of the first four natural frequencies of the rotor. A 3-D finite element model is used to generate the data for training the net. One of the contributions of this paper consists of a meshing procedure that reduces the systematic errors of the model, which have a significant influence in identification accuracy. A sensitivity analysis has been carried out for any size and position of the notch, which constitutes another original contribution in this field. In the studied case, the proposed procedure is able to predict both the position and depth of the notch when the notch depth is greater than 20 % of the rotor diameter. The sensitivity analysis reveals that there are blind spots in the rotor as regards notch identification. More... »

PAGES

305-324

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11012-013-9795-7

DOI

http://dx.doi.org/10.1007/s11012-013-9795-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047948059


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Oviedo", 
          "id": "https://www.grid.ac/institutes/grid.10863.3c", 
          "name": [
            "Department of Construction and Manufacturing Engineering, University of Oviedo, Campus de Gij\u00f3n 7.1.16, 33203, Gij\u00f3n, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zapico-Valle", 
        "givenName": "J. L.", 
        "id": "sg:person.015363525471.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015363525471.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Oviedo", 
          "id": "https://www.grid.ac/institutes/grid.10863.3c", 
          "name": [
            "Department of Construction and Manufacturing Engineering, University of Oviedo, Campus de Gij\u00f3n 5.1.22, 33203, Gij\u00f3n, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rodr\u00edguez", 
        "givenName": "E.", 
        "id": "sg:person.014225535727.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014225535727.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Oviedo", 
          "id": "https://www.grid.ac/institutes/grid.10863.3c", 
          "name": [
            "Department of Construction and Manufacturing Engineering, University of Oviedo, Campus de Gij\u00f3n 7.1.16, 33203, Gij\u00f3n, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Garc\u00eda-Di\u00e9guez", 
        "givenName": "M.", 
        "id": "sg:person.013173204071.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013173204071.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Oviedo", 
          "id": "https://www.grid.ac/institutes/grid.10863.3c", 
          "name": [
            "Department of Construction and Manufacturing Engineering, University of Oviedo, Campus de Gij\u00f3n 5.1.22, 33203, Gij\u00f3n, Spain"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cortizo", 
        "givenName": "J. L.", 
        "id": "sg:person.016143256745.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016143256745.96"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ymssp.2007.11.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001966455"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2011.12.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002200229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asoc.2012.08.047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002596564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0013-7944(94)00175-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002652696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.finel.2007.07.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005066940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmcb.2011.2168604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006047450"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymssp.2005.04.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007529902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0964-1726/10/3/319", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014413978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0964-1726/17/4/045016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014681852"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/mssp.2002.1547", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016405356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/mssp.2002.1547", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016405356"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymssp.2008.08.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021770216"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1475921704041866", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028024529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1177/1475921704041866", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028024529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymssp.2008.08.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031066175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymssp.2007.11.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031374008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11775300", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035245837", 
          "https://doi.org/10.1007/11775300"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11775300", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035245837", 
          "https://doi.org/10.1007/11775300"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1010562205385", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039204265", 
          "https://doi.org/10.1023/a:1010562205385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jsvi.1993.1026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042819944"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.neucom.2007.06.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043247630"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compstruc.2007.02.021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048248651"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.asoc.2008.07.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052708661"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jsv.2010.10.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052833867"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsmcb.2004.834428", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061796368"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.3119157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062101688"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1504/ijmic.2012.045691", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067474208"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-02", 
    "datePublishedReg": "2014-02-01", 
    "description": "A model-based procedure for rotor crack localization and assessment is presented in this paper. The procedure is applied to a small-size test rig provided with a notch. Both the position and depth of the notch are estimated through a neural network on the basis of the first four natural frequencies of the rotor. A 3-D finite element model is used to generate the data for training the net. One of the contributions of this paper consists of a meshing procedure that reduces the systematic errors of the model, which have a significant influence in identification accuracy. A sensitivity analysis has been carried out for any size and position of the notch, which constitutes another original contribution in this field. In the studied case, the proposed procedure is able to predict both the position and depth of the notch when the notch depth is greater than 20 % of the rotor diameter. The sensitivity analysis reveals that there are blind spots in the rotor as regards notch identification.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11012-013-9795-7", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1030472", 
        "issn": [
          "0025-6455", 
          "1572-9648"
        ], 
        "name": "Meccanica", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "49"
      }
    ], 
    "name": "Rotor crack identification based on neural networks and modal data", 
    "pagination": "305-324", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e469cb1c64dfe11dcc3829f45b9c255ba2e450f9b7d452793d277dee783f436d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11012-013-9795-7"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047948059"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11012-013-9795-7", 
      "https://app.dimensions.ai/details/publication/pub.1047948059"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000516.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11012-013-9795-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11012-013-9795-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11012-013-9795-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11012-013-9795-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11012-013-9795-7'


 

This table displays all metadata directly associated to this object as RDF triples.

157 TRIPLES      21 PREDICATES      51 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11012-013-9795-7 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N248367982fb849148d0f7d1094438bf5
4 schema:citation sg:pub.10.1007/11775300
5 sg:pub.10.1023/a:1010562205385
6 https://doi.org/10.1006/jsvi.1993.1026
7 https://doi.org/10.1006/mssp.2002.1547
8 https://doi.org/10.1016/0013-7944(94)00175-8
9 https://doi.org/10.1016/j.asoc.2008.07.005
10 https://doi.org/10.1016/j.asoc.2012.08.047
11 https://doi.org/10.1016/j.compstruc.2007.02.021
12 https://doi.org/10.1016/j.finel.2007.07.001
13 https://doi.org/10.1016/j.jsv.2010.10.006
14 https://doi.org/10.1016/j.neucom.2007.06.003
15 https://doi.org/10.1016/j.neucom.2011.12.001
16 https://doi.org/10.1016/j.ymssp.2005.04.005
17 https://doi.org/10.1016/j.ymssp.2007.11.003
18 https://doi.org/10.1016/j.ymssp.2007.11.005
19 https://doi.org/10.1016/j.ymssp.2008.08.003
20 https://doi.org/10.1016/j.ymssp.2008.08.008
21 https://doi.org/10.1088/0964-1726/10/3/319
22 https://doi.org/10.1088/0964-1726/17/4/045016
23 https://doi.org/10.1109/tsmcb.2004.834428
24 https://doi.org/10.1109/tsmcb.2011.2168604
25 https://doi.org/10.1115/1.3119157
26 https://doi.org/10.1177/1475921704041866
27 https://doi.org/10.1504/ijmic.2012.045691
28 schema:datePublished 2014-02
29 schema:datePublishedReg 2014-02-01
30 schema:description A model-based procedure for rotor crack localization and assessment is presented in this paper. The procedure is applied to a small-size test rig provided with a notch. Both the position and depth of the notch are estimated through a neural network on the basis of the first four natural frequencies of the rotor. A 3-D finite element model is used to generate the data for training the net. One of the contributions of this paper consists of a meshing procedure that reduces the systematic errors of the model, which have a significant influence in identification accuracy. A sensitivity analysis has been carried out for any size and position of the notch, which constitutes another original contribution in this field. In the studied case, the proposed procedure is able to predict both the position and depth of the notch when the notch depth is greater than 20 % of the rotor diameter. The sensitivity analysis reveals that there are blind spots in the rotor as regards notch identification.
31 schema:genre research_article
32 schema:inLanguage en
33 schema:isAccessibleForFree false
34 schema:isPartOf N288836275ae64fd5aae3659080f2cd6e
35 N2df78f3a9c09408aa24084920e49a33b
36 sg:journal.1030472
37 schema:name Rotor crack identification based on neural networks and modal data
38 schema:pagination 305-324
39 schema:productId N103f5d8d5ebd4cd3864ec16a10db5d92
40 N1dd81c9d71084881babe6f53706aa117
41 Ncf00252aa3e14dcbb697968158f67a17
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047948059
43 https://doi.org/10.1007/s11012-013-9795-7
44 schema:sdDatePublished 2019-04-10T23:25
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher Nf4ac8c19e6554a6880c8c76d46a6dd99
47 schema:url http://link.springer.com/10.1007%2Fs11012-013-9795-7
48 sgo:license sg:explorer/license/
49 sgo:sdDataset articles
50 rdf:type schema:ScholarlyArticle
51 N103f5d8d5ebd4cd3864ec16a10db5d92 schema:name doi
52 schema:value 10.1007/s11012-013-9795-7
53 rdf:type schema:PropertyValue
54 N1dd81c9d71084881babe6f53706aa117 schema:name dimensions_id
55 schema:value pub.1047948059
56 rdf:type schema:PropertyValue
57 N248367982fb849148d0f7d1094438bf5 rdf:first sg:person.015363525471.64
58 rdf:rest Nb1044da103fc4d4fb42453544b8f1d3c
59 N288836275ae64fd5aae3659080f2cd6e schema:volumeNumber 49
60 rdf:type schema:PublicationVolume
61 N2df78f3a9c09408aa24084920e49a33b schema:issueNumber 2
62 rdf:type schema:PublicationIssue
63 N6defc12ab656402c86680dcdd1f58673 rdf:first sg:person.013173204071.05
64 rdf:rest N898b65b1478a4f3291fe425f682d7763
65 N898b65b1478a4f3291fe425f682d7763 rdf:first sg:person.016143256745.96
66 rdf:rest rdf:nil
67 Nb1044da103fc4d4fb42453544b8f1d3c rdf:first sg:person.014225535727.76
68 rdf:rest N6defc12ab656402c86680dcdd1f58673
69 Ncf00252aa3e14dcbb697968158f67a17 schema:name readcube_id
70 schema:value e469cb1c64dfe11dcc3829f45b9c255ba2e450f9b7d452793d277dee783f436d
71 rdf:type schema:PropertyValue
72 Nf4ac8c19e6554a6880c8c76d46a6dd99 schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
75 schema:name Information and Computing Sciences
76 rdf:type schema:DefinedTerm
77 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
78 schema:name Artificial Intelligence and Image Processing
79 rdf:type schema:DefinedTerm
80 sg:journal.1030472 schema:issn 0025-6455
81 1572-9648
82 schema:name Meccanica
83 rdf:type schema:Periodical
84 sg:person.013173204071.05 schema:affiliation https://www.grid.ac/institutes/grid.10863.3c
85 schema:familyName García-Diéguez
86 schema:givenName M.
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013173204071.05
88 rdf:type schema:Person
89 sg:person.014225535727.76 schema:affiliation https://www.grid.ac/institutes/grid.10863.3c
90 schema:familyName Rodríguez
91 schema:givenName E.
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014225535727.76
93 rdf:type schema:Person
94 sg:person.015363525471.64 schema:affiliation https://www.grid.ac/institutes/grid.10863.3c
95 schema:familyName Zapico-Valle
96 schema:givenName J. L.
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015363525471.64
98 rdf:type schema:Person
99 sg:person.016143256745.96 schema:affiliation https://www.grid.ac/institutes/grid.10863.3c
100 schema:familyName Cortizo
101 schema:givenName J. L.
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016143256745.96
103 rdf:type schema:Person
104 sg:pub.10.1007/11775300 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035245837
105 https://doi.org/10.1007/11775300
106 rdf:type schema:CreativeWork
107 sg:pub.10.1023/a:1010562205385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039204265
108 https://doi.org/10.1023/a:1010562205385
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1006/jsvi.1993.1026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042819944
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1006/mssp.2002.1547 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016405356
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/0013-7944(94)00175-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002652696
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.asoc.2008.07.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052708661
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.asoc.2012.08.047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002596564
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.compstruc.2007.02.021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048248651
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.finel.2007.07.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005066940
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.jsv.2010.10.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052833867
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.neucom.2007.06.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043247630
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.neucom.2011.12.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002200229
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.ymssp.2005.04.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007529902
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/j.ymssp.2007.11.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031374008
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1016/j.ymssp.2007.11.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001966455
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.ymssp.2008.08.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031066175
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.ymssp.2008.08.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021770216
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1088/0964-1726/10/3/319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014413978
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1088/0964-1726/17/4/045016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014681852
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1109/tsmcb.2004.834428 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061796368
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1109/tsmcb.2011.2168604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006047450
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1115/1.3119157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062101688
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1177/1475921704041866 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028024529
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1504/ijmic.2012.045691 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067474208
153 rdf:type schema:CreativeWork
154 https://www.grid.ac/institutes/grid.10863.3c schema:alternateName University of Oviedo
155 schema:name Department of Construction and Manufacturing Engineering, University of Oviedo, Campus de Gijón 5.1.22, 33203, Gijón, Spain
156 Department of Construction and Manufacturing Engineering, University of Oviedo, Campus de Gijón 7.1.16, 33203, Gijón, Spain
157 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...