Efficient Simulation of Markov Chains Using Segmentation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-06

AUTHORS

Tim Brereton, Ole Stenzel, Björn Baumeier, Denis Andrienko, Volker Schmidt, Dirk Kroese

ABSTRACT

A methodology is proposed that is suitable for efficient simulation of continuous-time Markov chains that are nearly-completely decomposable. For such Markov chains the effort to adequately explore the state space via Crude Monte Carlo (CMC) simulation can be extremely large. The purpose of this paper is to provide a fast alternative to the standard CMC algorithm, which we call Aggregate Monte Carlo (AMC). The idea of the AMC algorithm is to reduce the jumping back and forth of the Markov chain in small subregions of the state space. We accomplish this by aggregating such problem regions into single states. We discuss two methods to identify collections of states where the Markov chain may become ‘trapped’: the stochastic watershed segmentation from image analysis, and a graph-theoretic decomposition method. As a motivating application, we consider the problem of estimating the charge carrier mobility of disordered organic semiconductors, which contain low-energy regions in which the charge carrier can quickly become stuck. It is shown that the AMC estimator for the charge carrier mobility reduces computational costs by several orders of magnitude compared to the CMC estimator. More... »

PAGES

465-484

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11009-013-9327-x

DOI

http://dx.doi.org/10.1007/s11009-013-9327-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1002708714


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Queensland", 
          "id": "https://www.grid.ac/institutes/grid.1003.2", 
          "name": [
            "School of Mathematics and Physics, The University of Queensland, 4072, Brisbane, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Brereton", 
        "givenName": "Tim", 
        "id": "sg:person.012514627371.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012514627371.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Ulm", 
          "id": "https://www.grid.ac/institutes/grid.6582.9", 
          "name": [
            "Institute of Stochastics, Ulm University, 89069, Ulm, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stenzel", 
        "givenName": "Ole", 
        "id": "sg:person.0755640733.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0755640733.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Polymer Research", 
          "id": "https://www.grid.ac/institutes/grid.419547.a", 
          "name": [
            "Max Planck Institute for Polymer Research, 55128, Mainz, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Baumeier", 
        "givenName": "Bj\u00f6rn", 
        "id": "sg:person.01371215344.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01371215344.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Polymer Research", 
          "id": "https://www.grid.ac/institutes/grid.419547.a", 
          "name": [
            "Max Planck Institute for Polymer Research, 55128, Mainz, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Andrienko", 
        "givenName": "Denis", 
        "id": "sg:person.01022025374.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01022025374.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Ulm", 
          "id": "https://www.grid.ac/institutes/grid.6582.9", 
          "name": [
            "Institute of Stochastics, Ulm University, 89069, Ulm, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Schmidt", 
        "givenName": "Volker", 
        "id": "sg:person.01051347101.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051347101.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Queensland", 
          "id": "https://www.grid.ac/institutes/grid.1003.2", 
          "name": [
            "School of Mathematics and Physics, The University of Queensland, 4072, Brisbane, Australia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kroese", 
        "givenName": "Dirk", 
        "id": "sg:person.015732325342.47", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015732325342.47"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1039/c2jm30182b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009782784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1017821421", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1017821421", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.83.235120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019337336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.83.235120", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019337336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pssb.2221750102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022212168"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ct200388s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027089053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ct200388s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027089053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.200803541", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028679728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2818.2009.03349.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036397185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2818.2009.03349.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036397185"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/01418638108222366", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049171039"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.72.224202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060615970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.72.224202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060615970"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.206601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060830382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.94.206601", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060830382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/49.400658", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061177239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1909285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069638447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/wsc.2012.6465003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094615290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ipds.1996.540217", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1094808906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4899-3324-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109705894", 
          "https://doi.org/10.1007/978-1-4899-3324-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4899-3324-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109705894", 
          "https://doi.org/10.1007/978-1-4899-3324-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-06", 
    "datePublishedReg": "2014-06-01", 
    "description": "A methodology is proposed that is suitable for efficient simulation of continuous-time Markov chains that are nearly-completely decomposable. For such Markov chains the effort to adequately explore the state space via Crude Monte Carlo (CMC) simulation can be extremely large. The purpose of this paper is to provide a fast alternative to the standard CMC algorithm, which we call Aggregate Monte Carlo (AMC). The idea of the AMC algorithm is to reduce the jumping back and forth of the Markov chain in small subregions of the state space. We accomplish this by aggregating such problem regions into single states. We discuss two methods to identify collections of states where the Markov chain may become \u2018trapped\u2019: the stochastic watershed segmentation from image analysis, and a graph-theoretic decomposition method. As a motivating application, we consider the problem of estimating the charge carrier mobility of disordered organic semiconductors, which contain low-energy regions in which the charge carrier can quickly become stuck. It is shown that the AMC estimator for the charge carrier mobility reduces computational costs by several orders of magnitude compared to the CMC estimator.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11009-013-9327-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1043739", 
        "issn": [
          "1387-5841", 
          "1573-7713"
        ], 
        "name": "Methodology and Computing in Applied Probability", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "16"
      }
    ], 
    "name": "Efficient Simulation of Markov Chains Using Segmentation", 
    "pagination": "465-484", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0ce59977d5e52b165e1a7f8e8238363ca637a4b5bdf2ee9a6a9e110231a3e01f"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11009-013-9327-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1002708714"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11009-013-9327-x", 
      "https://app.dimensions.ai/details/publication/pub.1002708714"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T15:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000579.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11009-013-9327-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11009-013-9327-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11009-013-9327-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11009-013-9327-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11009-013-9327-x'


 

This table displays all metadata directly associated to this object as RDF triples.

147 TRIPLES      21 PREDICATES      42 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11009-013-9327-x schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N175abb6139b142429488d866d754c5f8
4 schema:citation sg:pub.10.1007/978-1-4899-3324-9
5 https://app.dimensions.ai/details/publication/pub.1017821421
6 https://doi.org/10.1002/adma.200803541
7 https://doi.org/10.1002/pssb.2221750102
8 https://doi.org/10.1021/ct200388s
9 https://doi.org/10.1039/c2jm30182b
10 https://doi.org/10.1080/01418638108222366
11 https://doi.org/10.1103/physrevb.72.224202
12 https://doi.org/10.1103/physrevb.83.235120
13 https://doi.org/10.1103/physrevlett.94.206601
14 https://doi.org/10.1109/49.400658
15 https://doi.org/10.1109/ipds.1996.540217
16 https://doi.org/10.1109/wsc.2012.6465003
17 https://doi.org/10.1111/j.1365-2818.2009.03349.x
18 https://doi.org/10.2307/1909285
19 schema:datePublished 2014-06
20 schema:datePublishedReg 2014-06-01
21 schema:description A methodology is proposed that is suitable for efficient simulation of continuous-time Markov chains that are nearly-completely decomposable. For such Markov chains the effort to adequately explore the state space via Crude Monte Carlo (CMC) simulation can be extremely large. The purpose of this paper is to provide a fast alternative to the standard CMC algorithm, which we call Aggregate Monte Carlo (AMC). The idea of the AMC algorithm is to reduce the jumping back and forth of the Markov chain in small subregions of the state space. We accomplish this by aggregating such problem regions into single states. We discuss two methods to identify collections of states where the Markov chain may become ‘trapped’: the stochastic watershed segmentation from image analysis, and a graph-theoretic decomposition method. As a motivating application, we consider the problem of estimating the charge carrier mobility of disordered organic semiconductors, which contain low-energy regions in which the charge carrier can quickly become stuck. It is shown that the AMC estimator for the charge carrier mobility reduces computational costs by several orders of magnitude compared to the CMC estimator.
22 schema:genre research_article
23 schema:inLanguage en
24 schema:isAccessibleForFree false
25 schema:isPartOf N9ca3a58037d9470a8685cd59bbcb1536
26 Nb49865662ee64d83a7d13364c1f57ba4
27 sg:journal.1043739
28 schema:name Efficient Simulation of Markov Chains Using Segmentation
29 schema:pagination 465-484
30 schema:productId N18a7ef0a09094046892690cb2566af77
31 Nbe7696ad644040ceafb27925177f9506
32 Nc7f459babcdf445b8d39936898f6757f
33 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002708714
34 https://doi.org/10.1007/s11009-013-9327-x
35 schema:sdDatePublished 2019-04-10T15:11
36 schema:sdLicense https://scigraph.springernature.com/explorer/license/
37 schema:sdPublisher Nd22288833a204a0bb0e6865558ac3dcc
38 schema:url http://link.springer.com/10.1007%2Fs11009-013-9327-x
39 sgo:license sg:explorer/license/
40 sgo:sdDataset articles
41 rdf:type schema:ScholarlyArticle
42 N175abb6139b142429488d866d754c5f8 rdf:first sg:person.012514627371.16
43 rdf:rest Ne5335443b14041f3a1cf63de268df9b9
44 N18a7ef0a09094046892690cb2566af77 schema:name readcube_id
45 schema:value 0ce59977d5e52b165e1a7f8e8238363ca637a4b5bdf2ee9a6a9e110231a3e01f
46 rdf:type schema:PropertyValue
47 N1e3e80e39b9a47c79bca07c7dce912eb rdf:first sg:person.01022025374.38
48 rdf:rest N3e9452ffeee54a2899b0a783e6a6d3ce
49 N3e9452ffeee54a2899b0a783e6a6d3ce rdf:first sg:person.01051347101.48
50 rdf:rest N8a7a6658f6fe4356bdf6b617acb82372
51 N8a7a6658f6fe4356bdf6b617acb82372 rdf:first sg:person.015732325342.47
52 rdf:rest rdf:nil
53 N9ca3a58037d9470a8685cd59bbcb1536 schema:volumeNumber 16
54 rdf:type schema:PublicationVolume
55 Nb49865662ee64d83a7d13364c1f57ba4 schema:issueNumber 2
56 rdf:type schema:PublicationIssue
57 Nbe7696ad644040ceafb27925177f9506 schema:name doi
58 schema:value 10.1007/s11009-013-9327-x
59 rdf:type schema:PropertyValue
60 Nc7f459babcdf445b8d39936898f6757f schema:name dimensions_id
61 schema:value pub.1002708714
62 rdf:type schema:PropertyValue
63 Nd22288833a204a0bb0e6865558ac3dcc schema:name Springer Nature - SN SciGraph project
64 rdf:type schema:Organization
65 Ne1f6beeaf22a45d7ad986e1d34f68b06 rdf:first sg:person.01371215344.44
66 rdf:rest N1e3e80e39b9a47c79bca07c7dce912eb
67 Ne5335443b14041f3a1cf63de268df9b9 rdf:first sg:person.0755640733.86
68 rdf:rest Ne1f6beeaf22a45d7ad986e1d34f68b06
69 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
70 schema:name Information and Computing Sciences
71 rdf:type schema:DefinedTerm
72 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
73 schema:name Artificial Intelligence and Image Processing
74 rdf:type schema:DefinedTerm
75 sg:journal.1043739 schema:issn 1387-5841
76 1573-7713
77 schema:name Methodology and Computing in Applied Probability
78 rdf:type schema:Periodical
79 sg:person.01022025374.38 schema:affiliation https://www.grid.ac/institutes/grid.419547.a
80 schema:familyName Andrienko
81 schema:givenName Denis
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01022025374.38
83 rdf:type schema:Person
84 sg:person.01051347101.48 schema:affiliation https://www.grid.ac/institutes/grid.6582.9
85 schema:familyName Schmidt
86 schema:givenName Volker
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01051347101.48
88 rdf:type schema:Person
89 sg:person.012514627371.16 schema:affiliation https://www.grid.ac/institutes/grid.1003.2
90 schema:familyName Brereton
91 schema:givenName Tim
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012514627371.16
93 rdf:type schema:Person
94 sg:person.01371215344.44 schema:affiliation https://www.grid.ac/institutes/grid.419547.a
95 schema:familyName Baumeier
96 schema:givenName Björn
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01371215344.44
98 rdf:type schema:Person
99 sg:person.015732325342.47 schema:affiliation https://www.grid.ac/institutes/grid.1003.2
100 schema:familyName Kroese
101 schema:givenName Dirk
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015732325342.47
103 rdf:type schema:Person
104 sg:person.0755640733.86 schema:affiliation https://www.grid.ac/institutes/grid.6582.9
105 schema:familyName Stenzel
106 schema:givenName Ole
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0755640733.86
108 rdf:type schema:Person
109 sg:pub.10.1007/978-1-4899-3324-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109705894
110 https://doi.org/10.1007/978-1-4899-3324-9
111 rdf:type schema:CreativeWork
112 https://app.dimensions.ai/details/publication/pub.1017821421 schema:CreativeWork
113 https://doi.org/10.1002/adma.200803541 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028679728
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1002/pssb.2221750102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022212168
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1021/ct200388s schema:sameAs https://app.dimensions.ai/details/publication/pub.1027089053
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1039/c2jm30182b schema:sameAs https://app.dimensions.ai/details/publication/pub.1009782784
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1080/01418638108222366 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049171039
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1103/physrevb.72.224202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060615970
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1103/physrevb.83.235120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019337336
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1103/physrevlett.94.206601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060830382
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1109/49.400658 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061177239
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1109/ipds.1996.540217 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094808906
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1109/wsc.2012.6465003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1094615290
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1111/j.1365-2818.2009.03349.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1036397185
136 rdf:type schema:CreativeWork
137 https://doi.org/10.2307/1909285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069638447
138 rdf:type schema:CreativeWork
139 https://www.grid.ac/institutes/grid.1003.2 schema:alternateName University of Queensland
140 schema:name School of Mathematics and Physics, The University of Queensland, 4072, Brisbane, Australia
141 rdf:type schema:Organization
142 https://www.grid.ac/institutes/grid.419547.a schema:alternateName Max Planck Institute for Polymer Research
143 schema:name Max Planck Institute for Polymer Research, 55128, Mainz, Germany
144 rdf:type schema:Organization
145 https://www.grid.ac/institutes/grid.6582.9 schema:alternateName University of Ulm
146 schema:name Institute of Stochastics, Ulm University, 89069, Ulm, Germany
147 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...