Ontology type: schema:ScholarlyArticle Open Access: True
2009-08-13
AUTHORSHalfdan Grage, Jan Holst, Georg Lindgren, Mietek Saklak
ABSTRACTA level crossing predictor or alarm system with prediction horizon k is said to be optimal if it, at time t detects that an upcrossing will occur at time t + k, with a certain high probability and simultaneously gives a minimum number of false alarms. For a Gaussian stationary process, the optimal level crossing predictor can be explicitly specified in terms of the predicted value of the process itself and of its derivative. To the authors knowledge this simple optimal solution has not been used to any substantial degree. In this paper it is shown how a neural network can be trained to approximate an optimal alarm system arbitrarily well. As in other methods of parametrization, the choice of model structure, as well as an appropriate representation of data, are crucial for a good result. Comparative studies are presented for two Gaussian ARMA-processes, for which the optimal predictor can be derived theoretically. These studies confirm that a properly trained neural network can indeed approximate an optimal alarm system quite well – with due attention paid to the problems of model structure and representation of data. The technique is also tested on a strongly non-Gaussian Duffing process with satisfactory results. More... »
PAGES623-645
http://scigraph.springernature.com/pub.10.1007/s11009-009-9153-3
DOIhttp://dx.doi.org/10.1007/s11009-009-9153-3
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1035931193
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Statistics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Novo Nordisk A/S, Bagsv\u00e6rd, Denmark",
"id": "http://www.grid.ac/institutes/grid.425956.9",
"name": [
"Novo Nordisk A/S, Bagsv\u00e6rd, Denmark"
],
"type": "Organization"
},
"familyName": "Grage",
"givenName": "Halfdan",
"id": "sg:person.01167677057.51",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167677057.51"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Mathematical Statistics, Lund University, Lund, Sweden",
"id": "http://www.grid.ac/institutes/grid.4514.4",
"name": [
"Mathematical Statistics, Lund University, Lund, Sweden"
],
"type": "Organization"
},
"familyName": "Holst",
"givenName": "Jan",
"id": "sg:person.012640460143.11",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012640460143.11"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Mathematical Statistics, Lund University, Lund, Sweden",
"id": "http://www.grid.ac/institutes/grid.4514.4",
"name": [
"Mathematical Statistics, Lund University, Lund, Sweden"
],
"type": "Organization"
},
"familyName": "Lindgren",
"givenName": "Georg",
"id": "sg:person.012274436413.00",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012274436413.00"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Visma Software AB, Limhamn, Sweden",
"id": "http://www.grid.ac/institutes/None",
"name": [
"Visma Software AB, Limhamn, Sweden"
],
"type": "Organization"
},
"familyName": "Saklak",
"givenName": "Mietek",
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/978-1-4899-3099-6_2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1089745563",
"https://doi.org/10.1007/978-1-4899-3099-6_2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00500-004-0435-y",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000170180",
"https://doi.org/10.1007/s00500-004-0435-y"
],
"type": "CreativeWork"
}
],
"datePublished": "2009-08-13",
"datePublishedReg": "2009-08-13",
"description": "A level crossing predictor or alarm system with prediction horizon k is said to be optimal if it, at time t detects that an upcrossing will occur at time t\u2009+\u2009k, with a certain high probability and simultaneously gives a minimum number of false alarms. For a Gaussian stationary process, the optimal level crossing predictor can be explicitly specified in terms of the predicted value of the process itself and of its derivative. To the authors knowledge this simple optimal solution has not been used to any substantial degree. In this paper it is shown how a neural network can be trained to approximate an optimal alarm system arbitrarily well. As in other methods of parametrization, the choice of model structure, as well as an appropriate representation of data, are crucial for a good result. Comparative studies are presented for two Gaussian ARMA-processes, for which the optimal predictor can be derived theoretically. These studies confirm that a properly trained neural network can indeed approximate an optimal alarm system quite well \u2013 with due attention paid to the problems of model structure and representation of data. The technique is also tested on a strongly non-Gaussian Duffing process with satisfactory results.",
"genre": "article",
"id": "sg:pub.10.1007/s11009-009-9153-3",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1043739",
"issn": [
"1387-5841",
"1573-7713"
],
"name": "Methodology and Computing in Applied Probability",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "4",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "12"
}
],
"keywords": [
"optimal alarm system",
"neural network",
"certain high probability",
"time t",
"alarm system",
"method of parametrization",
"Gaussian stationary process",
"simple optimal solution",
"model structure",
"representation of data",
"stationary processes",
"optimal solution",
"horizon K",
"optimal predictor",
"minimum number",
"false alarms",
"network",
"appropriate representation",
"upcrossings",
"better results",
"high probability",
"representation",
"parametrization",
"system",
"alarms",
"satisfactory results",
"probability",
"problem",
"solution",
"structure",
"prediction",
"data",
"terms",
"process",
"results",
"technique",
"number",
"derivatives",
"method",
"comparative study",
"choice",
"values",
"attention",
"due attention",
"degree",
"authors",
"substantial degree",
"study",
"predictors",
"paper"
],
"name": "Level Crossing Prediction with Neural Networks",
"pagination": "623-645",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1035931193"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s11009-009-9153-3"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s11009-009-9153-3",
"https://app.dimensions.ai/details/publication/pub.1035931193"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:25",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_483.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s11009-009-9153-3"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11009-009-9153-3'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11009-009-9153-3'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11009-009-9153-3'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11009-009-9153-3'
This table displays all metadata directly associated to this object as RDF triples.
142 TRIPLES
22 PREDICATES
77 URIs
67 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/s11009-009-9153-3 | schema:about | anzsrc-for:01 |
2 | ″ | ″ | anzsrc-for:0104 |
3 | ″ | schema:author | N26971a19cf594db8954feb51de8b15bf |
4 | ″ | schema:citation | sg:pub.10.1007/978-1-4899-3099-6_2 |
5 | ″ | ″ | sg:pub.10.1007/s00500-004-0435-y |
6 | ″ | schema:datePublished | 2009-08-13 |
7 | ″ | schema:datePublishedReg | 2009-08-13 |
8 | ″ | schema:description | A level crossing predictor or alarm system with prediction horizon k is said to be optimal if it, at time t detects that an upcrossing will occur at time t + k, with a certain high probability and simultaneously gives a minimum number of false alarms. For a Gaussian stationary process, the optimal level crossing predictor can be explicitly specified in terms of the predicted value of the process itself and of its derivative. To the authors knowledge this simple optimal solution has not been used to any substantial degree. In this paper it is shown how a neural network can be trained to approximate an optimal alarm system arbitrarily well. As in other methods of parametrization, the choice of model structure, as well as an appropriate representation of data, are crucial for a good result. Comparative studies are presented for two Gaussian ARMA-processes, for which the optimal predictor can be derived theoretically. These studies confirm that a properly trained neural network can indeed approximate an optimal alarm system quite well – with due attention paid to the problems of model structure and representation of data. The technique is also tested on a strongly non-Gaussian Duffing process with satisfactory results. |
9 | ″ | schema:genre | article |
10 | ″ | schema:inLanguage | en |
11 | ″ | schema:isAccessibleForFree | true |
12 | ″ | schema:isPartOf | N1435c0fa5d054b37afb7539ddfed1972 |
13 | ″ | ″ | Nfc82f55150eb4397a086c5262e0db94a |
14 | ″ | ″ | sg:journal.1043739 |
15 | ″ | schema:keywords | Gaussian stationary process |
16 | ″ | ″ | alarm system |
17 | ″ | ″ | alarms |
18 | ″ | ″ | appropriate representation |
19 | ″ | ″ | attention |
20 | ″ | ″ | authors |
21 | ″ | ″ | better results |
22 | ″ | ″ | certain high probability |
23 | ″ | ″ | choice |
24 | ″ | ″ | comparative study |
25 | ″ | ″ | data |
26 | ″ | ″ | degree |
27 | ″ | ″ | derivatives |
28 | ″ | ″ | due attention |
29 | ″ | ″ | false alarms |
30 | ″ | ″ | high probability |
31 | ″ | ″ | horizon K |
32 | ″ | ″ | method |
33 | ″ | ″ | method of parametrization |
34 | ″ | ″ | minimum number |
35 | ″ | ″ | model structure |
36 | ″ | ″ | network |
37 | ″ | ″ | neural network |
38 | ″ | ″ | number |
39 | ″ | ″ | optimal alarm system |
40 | ″ | ″ | optimal predictor |
41 | ″ | ″ | optimal solution |
42 | ″ | ″ | paper |
43 | ″ | ″ | parametrization |
44 | ″ | ″ | prediction |
45 | ″ | ″ | predictors |
46 | ″ | ″ | probability |
47 | ″ | ″ | problem |
48 | ″ | ″ | process |
49 | ″ | ″ | representation |
50 | ″ | ″ | representation of data |
51 | ″ | ″ | results |
52 | ″ | ″ | satisfactory results |
53 | ″ | ″ | simple optimal solution |
54 | ″ | ″ | solution |
55 | ″ | ″ | stationary processes |
56 | ″ | ″ | structure |
57 | ″ | ″ | study |
58 | ″ | ″ | substantial degree |
59 | ″ | ″ | system |
60 | ″ | ″ | technique |
61 | ″ | ″ | terms |
62 | ″ | ″ | time t |
63 | ″ | ″ | upcrossings |
64 | ″ | ″ | values |
65 | ″ | schema:name | Level Crossing Prediction with Neural Networks |
66 | ″ | schema:pagination | 623-645 |
67 | ″ | schema:productId | N2e12adcee89245a9aaae5863c6d50a06 |
68 | ″ | ″ | N7932063a88d04279a347f6884b5818d4 |
69 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1035931193 |
70 | ″ | ″ | https://doi.org/10.1007/s11009-009-9153-3 |
71 | ″ | schema:sdDatePublished | 2022-05-20T07:25 |
72 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
73 | ″ | schema:sdPublisher | N68765f94a52445609b6e203d0c63665f |
74 | ″ | schema:url | https://doi.org/10.1007/s11009-009-9153-3 |
75 | ″ | sgo:license | sg:explorer/license/ |
76 | ″ | sgo:sdDataset | articles |
77 | ″ | rdf:type | schema:ScholarlyArticle |
78 | N1435c0fa5d054b37afb7539ddfed1972 | schema:volumeNumber | 12 |
79 | ″ | rdf:type | schema:PublicationVolume |
80 | N26971a19cf594db8954feb51de8b15bf | rdf:first | sg:person.01167677057.51 |
81 | ″ | rdf:rest | N8522685b832a424e808d29725d101712 |
82 | N292572f141c249059337f74ec34cd7ad | rdf:first | Nade9fc86f23d462a930226cc7eb0c4d4 |
83 | ″ | rdf:rest | rdf:nil |
84 | N2e12adcee89245a9aaae5863c6d50a06 | schema:name | doi |
85 | ″ | schema:value | 10.1007/s11009-009-9153-3 |
86 | ″ | rdf:type | schema:PropertyValue |
87 | N588e5046080b4278aed295d71067b033 | rdf:first | sg:person.012274436413.00 |
88 | ″ | rdf:rest | N292572f141c249059337f74ec34cd7ad |
89 | N68765f94a52445609b6e203d0c63665f | schema:name | Springer Nature - SN SciGraph project |
90 | ″ | rdf:type | schema:Organization |
91 | N7932063a88d04279a347f6884b5818d4 | schema:name | dimensions_id |
92 | ″ | schema:value | pub.1035931193 |
93 | ″ | rdf:type | schema:PropertyValue |
94 | N8522685b832a424e808d29725d101712 | rdf:first | sg:person.012640460143.11 |
95 | ″ | rdf:rest | N588e5046080b4278aed295d71067b033 |
96 | Nade9fc86f23d462a930226cc7eb0c4d4 | schema:affiliation | grid-institutes:None |
97 | ″ | schema:familyName | Saklak |
98 | ″ | schema:givenName | Mietek |
99 | ″ | rdf:type | schema:Person |
100 | Nfc82f55150eb4397a086c5262e0db94a | schema:issueNumber | 4 |
101 | ″ | rdf:type | schema:PublicationIssue |
102 | anzsrc-for:01 | schema:inDefinedTermSet | anzsrc-for: |
103 | ″ | schema:name | Mathematical Sciences |
104 | ″ | rdf:type | schema:DefinedTerm |
105 | anzsrc-for:0104 | schema:inDefinedTermSet | anzsrc-for: |
106 | ″ | schema:name | Statistics |
107 | ″ | rdf:type | schema:DefinedTerm |
108 | sg:journal.1043739 | schema:issn | 1387-5841 |
109 | ″ | ″ | 1573-7713 |
110 | ″ | schema:name | Methodology and Computing in Applied Probability |
111 | ″ | schema:publisher | Springer Nature |
112 | ″ | rdf:type | schema:Periodical |
113 | sg:person.01167677057.51 | schema:affiliation | grid-institutes:grid.425956.9 |
114 | ″ | schema:familyName | Grage |
115 | ″ | schema:givenName | Halfdan |
116 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167677057.51 |
117 | ″ | rdf:type | schema:Person |
118 | sg:person.012274436413.00 | schema:affiliation | grid-institutes:grid.4514.4 |
119 | ″ | schema:familyName | Lindgren |
120 | ″ | schema:givenName | Georg |
121 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012274436413.00 |
122 | ″ | rdf:type | schema:Person |
123 | sg:person.012640460143.11 | schema:affiliation | grid-institutes:grid.4514.4 |
124 | ″ | schema:familyName | Holst |
125 | ″ | schema:givenName | Jan |
126 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012640460143.11 |
127 | ″ | rdf:type | schema:Person |
128 | sg:pub.10.1007/978-1-4899-3099-6_2 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1089745563 |
129 | ″ | ″ | https://doi.org/10.1007/978-1-4899-3099-6_2 |
130 | ″ | rdf:type | schema:CreativeWork |
131 | sg:pub.10.1007/s00500-004-0435-y | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1000170180 |
132 | ″ | ″ | https://doi.org/10.1007/s00500-004-0435-y |
133 | ″ | rdf:type | schema:CreativeWork |
134 | grid-institutes:None | schema:alternateName | Visma Software AB, Limhamn, Sweden |
135 | ″ | schema:name | Visma Software AB, Limhamn, Sweden |
136 | ″ | rdf:type | schema:Organization |
137 | grid-institutes:grid.425956.9 | schema:alternateName | Novo Nordisk A/S, Bagsværd, Denmark |
138 | ″ | schema:name | Novo Nordisk A/S, Bagsværd, Denmark |
139 | ″ | rdf:type | schema:Organization |
140 | grid-institutes:grid.4514.4 | schema:alternateName | Mathematical Statistics, Lund University, Lund, Sweden |
141 | ″ | schema:name | Mathematical Statistics, Lund University, Lund, Sweden |
142 | ″ | rdf:type | schema:Organization |