Homotopy algebras of differential (super)forms in three and four dimensions View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2018-12

AUTHORS

Martin Rocek, Anton M. Zeitlin

ABSTRACT

We consider various A∞-algebras of differential (super)forms, which are related to gauge theories and demonstrate explicitly how certain reformulations of gauge theories lead to the transfer of the corresponding A∞-structures. In addition, for N=2 3D space, we construct the homotopic counterpart of the de Rham complex, which is related to the superfield formulation of the N=2 Chern–Simons theory. More... »

PAGES

2669-2694

References to SciGraph publications

  • 2007-09-19. Homotopy Lie superalgebra in Yang-Mills theory in JOURNAL OF HIGH ENERGY PHYSICS
  • 2008-10-23. 𝒩 = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals in JOURNAL OF HIGH ENERGY PHYSICS
  • 1988-10. Superfield formulation of the simplest three-dimensional gauge theories and conformal supergravities in THEORETICAL AND MATHEMATICAL PHYSICS
  • 2010-03. Conformal Field Theory and algebraic structure of gauge theory in JOURNAL OF HIGH ENERGY PHYSICS
  • 2008-09-16. Superconformal Chern-Simons theories and AdS4/CFT3 correspondence in JOURNAL OF HIGH ENERGY PHYSICS
  • 2007. Algebraic Structure of Yang-Mills Theory in THE UNITY OF MATHEMATICS
  • 2011-04. Quasiclassical Lian-Zuckerman Homotopy Algebras, Courant Algebroids and Gauge Theory in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11005-018-1109-5

    DOI

    http://dx.doi.org/10.1007/s11005-018-1109-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1104601494


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Stony Brook University", 
              "id": "https://www.grid.ac/institutes/grid.36425.36", 
              "name": [
                "C.N. Yang Institute for Theoretical Physics, Stony Brook University, 11794-3840, Stony Brook, NY, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rocek", 
            "givenName": "Martin", 
            "id": "sg:person.013055443551.84", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013055443551.84"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute of Problems of Mechanical Engineering", 
              "id": "https://www.grid.ac/institutes/grid.462405.1", 
              "name": [
                "Department of Mathematics, Louisiana State University, 303 Lockett Hall, 70803-4918, Baton Rouge, LA, USA", 
                "IPME RAS, V.O. Bolshoj pr., 61, 199178, St. Petersburg, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zeitlin", 
            "givenName": "Anton M.", 
            "id": "sg:person.015454412733.61", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015454412733.61"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/0-8176-4467-9_14", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008542080", 
              "https://doi.org/10.1007/0-8176-4467-9_14"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2008/10/091", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010633015", 
              "https://doi.org/10.1088/1126-6708/2008/10/091"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0550-3213(97)00580-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011402367"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s0002-9947-1963-0158400-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011958594"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.3142964", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019461681"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2007/09/068", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021613967", 
              "https://doi.org/10.1088/1126-6708/2007/09/068"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.nuclphysb.2007.10.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029821091"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2008/09/072", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030276275", 
              "https://doi.org/10.1088/1126-6708/2008/09/072"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01028682", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037499407", 
              "https://doi.org/10.1007/bf01028682"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-011-1206-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039041653", 
              "https://doi.org/10.1007/s00220-011-1206-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2010)056", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039132889", 
              "https://doi.org/10.1007/jhep03(2010)056"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep03(2010)056", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039132889", 
              "https://doi.org/10.1007/jhep03(2010)056"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1751-8113/42/35/355401", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041893272"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/1751-8113/42/35/355401", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041893272"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0129055x07002912", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062898089"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0217751x09043031", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062925611"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0219887806001016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1063009138"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/9789812799821_0007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1096076360"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-12", 
        "datePublishedReg": "2018-12-01", 
        "description": "We consider various A\u221e-algebras of differential (super)forms, which are related to gauge theories and demonstrate explicitly how certain reformulations of gauge theories lead to the transfer of the corresponding A\u221e-structures. In addition, for N=2 3D space, we construct the homotopic counterpart of the de Rham complex, which is related to the superfield formulation of the N=2 Chern\u2013Simons theory.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11005-018-1109-5", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1327584", 
            "issn": [
              "0377-9017", 
              "1573-0530"
            ], 
            "name": "Letters in Mathematical Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "12", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "108"
          }
        ], 
        "name": "Homotopy algebras of differential (super)forms in three and four dimensions", 
        "pagination": "2669-2694", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "7f35bc035f188bf0ac1d91185536ce91fdbdfac5e9d3bb41c30aa6c15840c51f"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11005-018-1109-5"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1104601494"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11005-018-1109-5", 
          "https://app.dimensions.ai/details/publication/pub.1104601494"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T16:50", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000564.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs11005-018-1109-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11005-018-1109-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11005-018-1109-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11005-018-1109-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11005-018-1109-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    127 TRIPLES      21 PREDICATES      43 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11005-018-1109-5 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Ncb8de635ab254a4cb7e6802ec09e2b9b
    4 schema:citation sg:pub.10.1007/0-8176-4467-9_14
    5 sg:pub.10.1007/bf01028682
    6 sg:pub.10.1007/jhep03(2010)056
    7 sg:pub.10.1007/s00220-011-1206-0
    8 sg:pub.10.1088/1126-6708/2007/09/068
    9 sg:pub.10.1088/1126-6708/2008/09/072
    10 sg:pub.10.1088/1126-6708/2008/10/091
    11 https://doi.org/10.1016/j.nuclphysb.2007.10.017
    12 https://doi.org/10.1016/s0550-3213(97)00580-4
    13 https://doi.org/10.1063/1.3142964
    14 https://doi.org/10.1088/1751-8113/42/35/355401
    15 https://doi.org/10.1090/s0002-9947-1963-0158400-5
    16 https://doi.org/10.1142/9789812799821_0007
    17 https://doi.org/10.1142/s0129055x07002912
    18 https://doi.org/10.1142/s0217751x09043031
    19 https://doi.org/10.1142/s0219887806001016
    20 schema:datePublished 2018-12
    21 schema:datePublishedReg 2018-12-01
    22 schema:description We consider various A∞-algebras of differential (super)forms, which are related to gauge theories and demonstrate explicitly how certain reformulations of gauge theories lead to the transfer of the corresponding A∞-structures. In addition, for N=2 3D space, we construct the homotopic counterpart of the de Rham complex, which is related to the superfield formulation of the N=2 Chern–Simons theory.
    23 schema:genre research_article
    24 schema:inLanguage en
    25 schema:isAccessibleForFree true
    26 schema:isPartOf N4e480f37d25949549a2b8e6c0d1e2926
    27 Ne86207f8684749ebb48038b1801a22b1
    28 sg:journal.1327584
    29 schema:name Homotopy algebras of differential (super)forms in three and four dimensions
    30 schema:pagination 2669-2694
    31 schema:productId N1c451e4b216a4b0bb0e8341b935ad334
    32 N768496acbe044d4e90b48908dc0cb2c3
    33 Na7564654dee64cc1b19ac2ea81fe33f7
    34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104601494
    35 https://doi.org/10.1007/s11005-018-1109-5
    36 schema:sdDatePublished 2019-04-10T16:50
    37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    38 schema:sdPublisher Nb04f207e22534a0daa7b83c750969274
    39 schema:url https://link.springer.com/10.1007%2Fs11005-018-1109-5
    40 sgo:license sg:explorer/license/
    41 sgo:sdDataset articles
    42 rdf:type schema:ScholarlyArticle
    43 N1c451e4b216a4b0bb0e8341b935ad334 schema:name doi
    44 schema:value 10.1007/s11005-018-1109-5
    45 rdf:type schema:PropertyValue
    46 N4e480f37d25949549a2b8e6c0d1e2926 schema:volumeNumber 108
    47 rdf:type schema:PublicationVolume
    48 N768496acbe044d4e90b48908dc0cb2c3 schema:name readcube_id
    49 schema:value 7f35bc035f188bf0ac1d91185536ce91fdbdfac5e9d3bb41c30aa6c15840c51f
    50 rdf:type schema:PropertyValue
    51 N79708b6ec17c4d9ca5d94b08d567db2a rdf:first sg:person.015454412733.61
    52 rdf:rest rdf:nil
    53 Na7564654dee64cc1b19ac2ea81fe33f7 schema:name dimensions_id
    54 schema:value pub.1104601494
    55 rdf:type schema:PropertyValue
    56 Nb04f207e22534a0daa7b83c750969274 schema:name Springer Nature - SN SciGraph project
    57 rdf:type schema:Organization
    58 Ncb8de635ab254a4cb7e6802ec09e2b9b rdf:first sg:person.013055443551.84
    59 rdf:rest N79708b6ec17c4d9ca5d94b08d567db2a
    60 Ne86207f8684749ebb48038b1801a22b1 schema:issueNumber 12
    61 rdf:type schema:PublicationIssue
    62 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    63 schema:name Mathematical Sciences
    64 rdf:type schema:DefinedTerm
    65 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    66 schema:name Pure Mathematics
    67 rdf:type schema:DefinedTerm
    68 sg:journal.1327584 schema:issn 0377-9017
    69 1573-0530
    70 schema:name Letters in Mathematical Physics
    71 rdf:type schema:Periodical
    72 sg:person.013055443551.84 schema:affiliation https://www.grid.ac/institutes/grid.36425.36
    73 schema:familyName Rocek
    74 schema:givenName Martin
    75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013055443551.84
    76 rdf:type schema:Person
    77 sg:person.015454412733.61 schema:affiliation https://www.grid.ac/institutes/grid.462405.1
    78 schema:familyName Zeitlin
    79 schema:givenName Anton M.
    80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015454412733.61
    81 rdf:type schema:Person
    82 sg:pub.10.1007/0-8176-4467-9_14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008542080
    83 https://doi.org/10.1007/0-8176-4467-9_14
    84 rdf:type schema:CreativeWork
    85 sg:pub.10.1007/bf01028682 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037499407
    86 https://doi.org/10.1007/bf01028682
    87 rdf:type schema:CreativeWork
    88 sg:pub.10.1007/jhep03(2010)056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039132889
    89 https://doi.org/10.1007/jhep03(2010)056
    90 rdf:type schema:CreativeWork
    91 sg:pub.10.1007/s00220-011-1206-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039041653
    92 https://doi.org/10.1007/s00220-011-1206-0
    93 rdf:type schema:CreativeWork
    94 sg:pub.10.1088/1126-6708/2007/09/068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021613967
    95 https://doi.org/10.1088/1126-6708/2007/09/068
    96 rdf:type schema:CreativeWork
    97 sg:pub.10.1088/1126-6708/2008/09/072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030276275
    98 https://doi.org/10.1088/1126-6708/2008/09/072
    99 rdf:type schema:CreativeWork
    100 sg:pub.10.1088/1126-6708/2008/10/091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010633015
    101 https://doi.org/10.1088/1126-6708/2008/10/091
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.1016/j.nuclphysb.2007.10.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029821091
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.1016/s0550-3213(97)00580-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011402367
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.1063/1.3142964 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019461681
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1088/1751-8113/42/35/355401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041893272
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1090/s0002-9947-1963-0158400-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011958594
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1142/9789812799821_0007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096076360
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1142/s0129055x07002912 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062898089
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1142/s0217751x09043031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062925611
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1142/s0219887806001016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063009138
    120 rdf:type schema:CreativeWork
    121 https://www.grid.ac/institutes/grid.36425.36 schema:alternateName Stony Brook University
    122 schema:name C.N. Yang Institute for Theoretical Physics, Stony Brook University, 11794-3840, Stony Brook, NY, USA
    123 rdf:type schema:Organization
    124 https://www.grid.ac/institutes/grid.462405.1 schema:alternateName Institute of Problems of Mechanical Engineering
    125 schema:name Department of Mathematics, Louisiana State University, 303 Lockett Hall, 70803-4918, Baton Rouge, LA, USA
    126 IPME RAS, V.O. Bolshoj pr., 61, 199178, St. Petersburg, Russia
    127 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...