Ontology type: schema:ScholarlyArticle Open Access: True
2017-09-05
AUTHORSGiulio Bonelli, Oleg Lisovyy, Kazunobu Maruyoshi, Antonio Sciarappa, Alessandro Tanzini
ABSTRACTWe elucidate the relation between Painlevé equations and four-dimensional rank one N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {N} = 2$$\end{document} theories by identifying the connection associated with Painlevé isomonodromic problems with the oper limit of the flat connection of the Hitchin system associated with gauge theories and by studying the corresponding renormalization group flow. Based on this correspondence, we provide long-distance expansions at various canonical rays for all Painlevé τ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau $$\end{document}-functions in terms of magnetic and dyonic Nekrasov partition functions for N=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {N} = 2$$\end{document} SQCD and Argyres–Douglas theories at self-dual Omega background ϵ1+ϵ2=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon _1 + \epsilon _2 = 0$$\end{document} or equivalently in terms of c=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$c=1$$\end{document} irregular conformal blocks. More... »
PAGES2359-2413
http://scigraph.springernature.com/pub.10.1007/s11005-017-0983-6
DOIhttp://dx.doi.org/10.1007/s11005-017-0983-6
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1091492545
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "International School of Advanced Studies (SISSA), 265 via Bonomea, 34136, Trieste, Italy",
"id": "http://www.grid.ac/institutes/grid.5970.b",
"name": [
"International School of Advanced Studies (SISSA), 265 via Bonomea, 34136, Trieste, Italy"
],
"type": "Organization"
},
"familyName": "Bonelli",
"givenName": "Giulio",
"id": "sg:person.010004114276.10",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010004114276.10"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Laboratoire de Math\u00e9matiques et Physique Th\u00e9orique, CNRS/UMR 7350, Universit\u00e9 de Tours, Parc de Grandmont, 37200, Tours, France",
"id": "http://www.grid.ac/institutes/grid.411167.4",
"name": [
"Laboratoire de Math\u00e9matiques et Physique Th\u00e9orique, CNRS/UMR 7350, Universit\u00e9 de Tours, Parc de Grandmont, 37200, Tours, France"
],
"type": "Organization"
},
"familyName": "Lisovyy",
"givenName": "Oleg",
"id": "sg:person.010561500312.51",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010561500312.51"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Faculty of Science and Technology, Seikei University, 3-3-1 Kichijoji-Kitamachi, 180-8633, Musashino-shi, Tokyo, Japan",
"id": "http://www.grid.ac/institutes/grid.263319.c",
"name": [
"Faculty of Science and Technology, Seikei University, 3-3-1 Kichijoji-Kitamachi, 180-8633, Musashino-shi, Tokyo, Japan"
],
"type": "Organization"
},
"familyName": "Maruyoshi",
"givenName": "Kazunobu",
"id": "sg:person.014757666656.30",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014757666656.30"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "School of Physics, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, 130-722, Seoul, Republic of Korea",
"id": "http://www.grid.ac/institutes/grid.249961.1",
"name": [
"School of Physics, Korea Institute for Advanced Study, 85 Hoegiro, Dongdaemun-gu, 130-722, Seoul, Republic of Korea"
],
"type": "Organization"
},
"familyName": "Sciarappa",
"givenName": "Antonio",
"id": "sg:person.015016741655.97",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015016741655.97"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "International School of Advanced Studies (SISSA), 265 via Bonomea, 34136, Trieste, Italy",
"id": "http://www.grid.ac/institutes/grid.5970.b",
"name": [
"International School of Advanced Studies (SISSA), 265 via Bonomea, 34136, Trieste, Italy"
],
"type": "Organization"
},
"familyName": "Tanzini",
"givenName": "Alessandro",
"id": "sg:person.011711055526.18",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011711055526.18"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1088/1126-6708/2003/05/054",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1053140959",
"https://doi.org/10.1088/1126-6708/2003/05/054"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1088/1126-6708/2007/09/054",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1027480443",
"https://doi.org/10.1088/1126-6708/2007/09/054"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep09(2015)167",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022653231",
"https://doi.org/10.1007/jhep09(2015)167"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep12(2012)050",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037559667",
"https://doi.org/10.1007/jhep12(2012)050"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00220-015-2427-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024312306",
"https://doi.org/10.1007/s00220-015-2427-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep10(2012)038",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1036734945",
"https://doi.org/10.1007/jhep10(2012)038"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s002200100446",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1026106468",
"https://doi.org/10.1007/s002200100446"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep08(2012)034",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000072911",
"https://doi.org/10.1007/jhep08(2012)034"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep07(2010)083",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1034366437",
"https://doi.org/10.1007/jhep07(2010)083"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep05(2012)052",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052809823",
"https://doi.org/10.1007/jhep05(2012)052"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02098023",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051077312",
"https://doi.org/10.1007/bf02098023"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep11(2012)019",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1034170656",
"https://doi.org/10.1007/jhep11(2012)019"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1088/1126-6708/2008/02/106",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039171281",
"https://doi.org/10.1088/1126-6708/2008/02/106"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11005-016-0893-z",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023274116",
"https://doi.org/10.1007/s11005-016-0893-z"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01762370",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023970905",
"https://doi.org/10.1007/bf01762370"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01197110",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000939155",
"https://doi.org/10.1007/bf01197110"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11005-010-0369-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022882223",
"https://doi.org/10.1007/s11005-010-0369-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01458459",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1041276747",
"https://doi.org/10.1007/bf01458459"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00220-014-2245-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1014146262",
"https://doi.org/10.1007/s00220-014-2245-0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf00777371",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015833341",
"https://doi.org/10.1007/bf00777371"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep06(2015)082",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049877267",
"https://doi.org/10.1007/jhep06(2015)082"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep10(2012)138",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049335927",
"https://doi.org/10.1007/jhep10(2012)138"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02097368",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021658304",
"https://doi.org/10.1007/bf02097368"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/0-8176-4467-9_15",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035404476",
"https://doi.org/10.1007/0-8176-4467-9_15"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00220-017-3053-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1093058723",
"https://doi.org/10.1007/s00220-017-3053-0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep10(2012)183",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1002352308",
"https://doi.org/10.1007/jhep10(2012)183"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep02(2012)031",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1001081567",
"https://doi.org/10.1007/jhep02(2012)031"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep01(2010)125",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1049735189",
"https://doi.org/10.1007/jhep01(2010)125"
],
"type": "CreativeWork"
}
],
"datePublished": "2017-09-05",
"datePublishedReg": "2017-09-05",
"description": "We elucidate the relation between Painlev\u00e9 equations and four-dimensional rank one N=2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mathcal {N} = 2$$\\end{document} theories by identifying the connection associated with Painlev\u00e9 isomonodromic problems with the oper limit of the flat connection of the Hitchin system associated with gauge theories and by studying the corresponding renormalization group flow. Based on this correspondence, we provide long-distance expansions at various canonical rays for all Painlev\u00e9 \u03c4\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\tau $$\\end{document}-functions in terms of magnetic and dyonic Nekrasov partition functions for N=2\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\mathcal {N} = 2$$\\end{document} SQCD and Argyres\u2013Douglas theories at self-dual Omega background \u03f51+\u03f52=0\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\\epsilon _1 + \\epsilon _2 = 0$$\\end{document} or equivalently in terms of c=1\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$c=1$$\\end{document} irregular conformal blocks.",
"genre": "article",
"id": "sg:pub.10.1007/s11005-017-0983-6",
"inLanguage": "en",
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1327584",
"issn": [
"0377-9017",
"1573-0530"
],
"name": "Letters in Mathematical Physics",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "12",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "107"
}
],
"keywords": [
"corresponding renormalization group flow",
"renormalization group flow",
"Painlev\u00e9 equations",
"isomonodromic problem",
"Hitchin systems",
"group flow",
"Nekrasov partition function",
"Argyres-Douglas theories",
"irregular conformal blocks",
"theory correspondence",
"rank one",
"flat connections",
"gauge theory",
"long distance expansion",
"partition function",
"Omega background",
"conformal blocks",
"theory",
"equations",
"Painlev\u00e9",
"correspondence",
"SQCD",
"connection",
"problem",
"flow",
"function",
"terms",
"one",
"limit",
"system",
"expansion",
"rays",
"relation",
"background",
"block"
],
"name": "On Painlev\u00e9/gauge theory correspondence",
"pagination": "2359-2413",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1091492545"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s11005-017-0983-6"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s11005-017-0983-6",
"https://app.dimensions.ai/details/publication/pub.1091492545"
],
"sdDataset": "articles",
"sdDatePublished": "2022-06-01T22:16",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_734.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s11005-017-0983-6"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11005-017-0983-6'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11005-017-0983-6'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11005-017-0983-6'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11005-017-0983-6'
This table displays all metadata directly associated to this object as RDF triples.
242 TRIPLES
22 PREDICATES
88 URIs
52 LITERALS
6 BLANK NODES