Elliptic Genera of Two-Dimensional N=2 Gauge Theories with Rank-One Gauge Groups

Ontology type: schema:ScholarlyArticle      Open Access: True

Article Info

DATE

2013-11-30

AUTHORS ABSTRACT

We compute the elliptic genera of two-dimensional N=(2,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{N} = (2, 2)}$$\end{document} and N=(0,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{N} = (0, 2)}$$\end{document} -gauged linear sigma models via supersymmetric localization, for rank-one gauge groups. The elliptic genus is expressed as a sum over residues of a meromorphic function whose argument is the holonomy of the gauge field along both the spatial and the temporal directions of the torus. We illustrate our formulas by a few examples including the quintic Calabiā€“Yau, N=(2,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{N} = (2, 2)}$$\end{document} SU(2) and O(2) gauge theories coupled to N fundamental chiral multiplets, and a geometric N=(0,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{N} = (0, 2)}$$\end{document} model. More... »

PAGES

465-493

References to SciGraph publications

• 1988. The index of the dirac operator in loop space in ELLIPTIC CURVES AND MODULAR FORMS IN ALGEBRAIC TOPOLOGY
• 1987-12. Elliptic genera and quantum field theory in COMMUNICATIONS IN MATHEMATICAL PHYSICS
• 2008-05-09. Equivariant Volumes of Non-Compact Quotients and Instanton Counting in COMMUNICATIONS IN MATHEMATICAL PHYSICS
• 2013-06-03. Two-dimensional SCFTs from wrapped branes and c-extremization in JOURNAL OF HIGH ENERGY PHYSICS
• 2014-07-17. Partition Functions of N=(2,2) Gauge Theories on S2 and Vortices in COMMUNICATIONS IN MATHEMATICAL PHYSICS
• 1992. Manifolds and Modular Forms in NONE
• 2000-02-16. Generalization of Calabi-Yau/Landau-Ginzburg correspondence in JOURNAL OF HIGH ENERGY PHYSICS
• 2007-05-25. Aspects of non-abelian gauge dynamics in two-dimensional š¯’© = (2,2) theories in JOURNAL OF HIGH ENERGY PHYSICS
• 2004-12-01. Toric reduction and a conjecture of Batyrev and Materov in INVENTIONES MATHEMATICAE
• 2013-10-21. Duality in two-dimensional (2,2) supersymmetric non-Abelian gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
• Journal

TITLE

Letters in Mathematical Physics

ISSUE

4

VOLUME

104

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11005-013-0673-y

DOI

http://dx.doi.org/10.1007/s11005-013-0673-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045565737

Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service:

[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Simons Center for Geometry and Physics, Stony Brook University, 11794, Stony Brook, NY, USA",
"id": "http://www.grid.ac/institutes/grid.36425.36",
"name": [
"Simons Center for Geometry and Physics, Stony Brook University, 11794, Stony Brook, NY, USA"
],
"type": "Organization"
},
"familyName": "Benini",
"givenName": "Francesco",
"id": "sg:person.011505670225.30",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011505670225.30"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute for the Physics and Mathematics of the Universe, University of Tokyo, 277-8583, Kashiwa, Chiba, Japan",
"id": "http://www.grid.ac/institutes/grid.440880.0",
"name": [
"Institute for the Physics and Mathematics of the Universe, University of Tokyo, 277-8583, Kashiwa, Chiba, Japan"
],
"type": "Organization"
},
"familyName": "Eager",
"givenName": "Richard",
"id": "sg:person.010047477352.47",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010047477352.47"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Institute for the Physics and Mathematics of the Universe, University of Tokyo, 277-8583, Kashiwa, Chiba, Japan",
"id": "http://www.grid.ac/institutes/grid.440880.0",
"name": [
"Institute for the Physics and Mathematics of the Universe, University of Tokyo, 277-8583, Kashiwa, Chiba, Japan"
],
"type": "Organization"
},
"familyName": "Hori",
"givenName": "Kentaro",
"id": "sg:person.012240020752.09",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012240020752.09"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Physics, Faculty of Science, University of Tokyo, Bunkyo-ku, 133-0022, Tokyo, Japan",
"id": "http://www.grid.ac/institutes/grid.26999.3d",
"name": [
"Department of Physics, Faculty of Science, University of Tokyo, Bunkyo-ku, 133-0022, Tokyo, Japan"
],
"type": "Organization"
},
"familyName": "Tachikawa",
"givenName": "Yuji",
"id": "sg:person.010520672276.19",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010520672276.19"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1088/1126-6708/2007/05/079",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005771754",
"https://doi.org/10.1088/1126-6708/2007/05/079"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1088/1126-6708/2000/02/028",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023653878",
"https://doi.org/10.1088/1126-6708/2000/02/028"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00220-008-0501-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1022065002",
"https://doi.org/10.1007/s00220-008-0501-x"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01208956",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028655831",
"https://doi.org/10.1007/bf01208956"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00220-014-2112-z",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007928508",
"https://doi.org/10.1007/s00220-014-2112-z"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-663-14045-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035392954",
"https://doi.org/10.1007/978-3-663-14045-0"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep10(2013)121",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025485605",
"https://doi.org/10.1007/jhep10(2013)121"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/jhep06(2013)005",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051586061",
"https://doi.org/10.1007/jhep06(2013)005"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00222-004-0375-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1008524964",
"https://doi.org/10.1007/s00222-004-0375-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bfb0078045",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039903331",
"https://doi.org/10.1007/bfb0078045"
],
"type": "CreativeWork"
}
],
"datePublished": "2013-11-30",
"datePublishedReg": "2013-11-30",
"description": "We compute the elliptic genera of two-dimensional N=(2,2)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\mathcal{N} = (2, 2)}$$\\end{document} and N=(0,2)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\mathcal{N} = (0, 2)}$$\\end{document} -gauged linear sigma models via supersymmetric localization, for rank-one gauge groups. The elliptic genus is expressed as a sum over residues of a meromorphic function whose argument is the holonomy of the gauge field along both the spatial and the temporal directions of the torus. We illustrate our formulas by a few examples including the quintic Calabi\u2013Yau, N=(2,2)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\mathcal{N} = (2, 2)}$$\\end{document} SU(2) and O(2) gauge theories coupled to N fundamental chiral multiplets, and a geometric N=(0,2)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\mathcal{N} = (0, 2)}$$\\end{document} model.",
"genre": "article",
"id": "sg:pub.10.1007/s11005-013-0673-y",
"isAccessibleForFree": true,
"isFundedItemOf": [
{
"id": "sg:grant.6012161",
"type": "MonetaryGrant"
},
{
"id": "sg:grant.6126781",
"type": "MonetaryGrant"
}
],
"isPartOf": [
{
"id": "sg:journal.1327584",
"issn": [
"0377-9017",
"1573-0530"
],
"name": "Letters in Mathematical Physics",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "4",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
}
],
"keywords": [
"elliptic genus",
"gauge theory",
"gauge group",
"gauged linear sigma models",
"fundamental chiral multiplets",
"quintic Calabi\u2013Yau",
"linear sigma model",
"sigma model",
"Calabi-Yau",
"gauge fields",
"supersymmetric localization",
"chiral multiplets",
"meromorphic functions",
"temporal direction",
"theory",
"holonomy",
"torus",
"model",
"multiplets",
"formula",
"sum",
"field",
"function",
"direction",
"argument",
"localization",
"group",
"genus",
"residues",
"example"
],
"name": "Elliptic Genera of Two-Dimensional N=2 Gauge Theories with Rank-One Gauge Groups",
"pagination": "465-493",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1045565737"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s11005-013-0673-y"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s11005-013-0673-y",
"https://app.dimensions.ai/details/publication/pub.1045565737"
],
"sdDataset": "articles",
"sdDatePublished": "2022-12-01T06:31",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_611.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s11005-013-0673-y"
}
]

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11005-013-0673-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11005-013-0673-y'

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11005-013-0673-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11005-013-0673-y'

This table displays all metadata directly associated to this object as RDF triples.

158 TRIPLES      21 PREDICATES      64 URIs      46 LITERALS      6 BLANK NODES

Subject Predicate Object
2 anzsrc-for:0101
4 schema:citation sg:pub.10.1007/978-3-663-14045-0
5 sg:pub.10.1007/bf01208956
6 sg:pub.10.1007/bfb0078045
7 sg:pub.10.1007/jhep06(2013)005
8 sg:pub.10.1007/jhep10(2013)121
9 sg:pub.10.1007/s00220-008-0501-x
10 sg:pub.10.1007/s00220-014-2112-z
11 sg:pub.10.1007/s00222-004-0375-2
12 sg:pub.10.1088/1126-6708/2000/02/028
13 sg:pub.10.1088/1126-6708/2007/05/079
14 schema:datePublished 2013-11-30
15 schema:datePublishedReg 2013-11-30
16 schema:description We compute the elliptic genera of two-dimensional N=(2,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{N} = (2, 2)}$$\end{document} and N=(0,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{N} = (0, 2)}$$\end{document} -gauged linear sigma models via supersymmetric localization, for rank-one gauge groups. The elliptic genus is expressed as a sum over residues of a meromorphic function whose argument is the holonomy of the gauge field along both the spatial and the temporal directions of the torus. We illustrate our formulas by a few examples including the quintic Calabiā€“Yau, N=(2,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{N} = (2, 2)}$$\end{document} SU(2) and O(2) gauge theories coupled to N fundamental chiral multiplets, and a geometric N=(0,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{N} = (0, 2)}$$\end{document} model.
17 schema:genre article
18 schema:isAccessibleForFree true
19 schema:isPartOf N71798482991c492abf85ce36fc89a309
20 N8277cb6ed36c480680ba6af7e5d1a01e
21 sg:journal.1327584
22 schema:keywords Calabi-Yau
23 argument
24 chiral multiplets
25 direction
26 elliptic genus
27 example
28 field
29 formula
30 function
31 fundamental chiral multiplets
32 gauge fields
33 gauge group
34 gauge theory
35 gauged linear sigma models
36 genus
37 group
38 holonomy
39 linear sigma model
40 localization
41 meromorphic functions
42 model
43 multiplets
44 quintic Calabiā€“Yau
45 residues
46 sigma model
47 sum
48 supersymmetric localization
49 temporal direction
50 theory
51 torus
52 schema:name Elliptic Genera of Two-Dimensional N=2 Gauge Theories with Rank-One Gauge Groups
53 schema:pagination 465-493
54 schema:productId N54f04aebf3274a1eb66263cc74f66888
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045565737
57 https://doi.org/10.1007/s11005-013-0673-y
58 schema:sdDatePublished 2022-12-01T06:31
60 schema:sdPublisher Na91cdfa2bb92430cbdce330fabd64cd3
61 schema:url https://doi.org/10.1007/s11005-013-0673-y
63 sgo:sdDataset articles
64 rdf:type schema:ScholarlyArticle
67 N54f04aebf3274a1eb66263cc74f66888 schema:name dimensions_id
68 schema:value pub.1045565737
69 rdf:type schema:PropertyValue
71 rdf:type schema:PublicationVolume
72 N8277cb6ed36c480680ba6af7e5d1a01e schema:issueNumber 4
73 rdf:type schema:PublicationIssue
75 rdf:rest Nb8a786739d0646b1a54f19611fd85c9b
76 Na91cdfa2bb92430cbdce330fabd64cd3 schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
79 rdf:rest rdf:nil
80 Nb8a786739d0646b1a54f19611fd85c9b rdf:first sg:person.010047477352.47
83 schema:value 10.1007/s11005-013-0673-y
84 rdf:type schema:PropertyValue
85 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
86 schema:name Mathematical Sciences
87 rdf:type schema:DefinedTerm
88 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
89 schema:name Pure Mathematics
90 rdf:type schema:DefinedTerm
91 sg:grant.6012161 http://pending.schema.org/fundedItem sg:pub.10.1007/s11005-013-0673-y
92 rdf:type schema:MonetaryGrant
93 sg:grant.6126781 http://pending.schema.org/fundedItem sg:pub.10.1007/s11005-013-0673-y
94 rdf:type schema:MonetaryGrant
95 sg:journal.1327584 schema:issn 0377-9017
96 1573-0530
97 schema:name Letters in Mathematical Physics
98 schema:publisher Springer Nature
99 rdf:type schema:Periodical
100 sg:person.010047477352.47 schema:affiliation grid-institutes:grid.440880.0
101 schema:familyName Eager
102 schema:givenName Richard
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010047477352.47
104 rdf:type schema:Person
105 sg:person.010520672276.19 schema:affiliation grid-institutes:grid.26999.3d
106 schema:familyName Tachikawa
107 schema:givenName Yuji
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010520672276.19
109 rdf:type schema:Person
110 sg:person.011505670225.30 schema:affiliation grid-institutes:grid.36425.36
111 schema:familyName Benini
112 schema:givenName Francesco
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011505670225.30
114 rdf:type schema:Person
115 sg:person.012240020752.09 schema:affiliation grid-institutes:grid.440880.0
116 schema:familyName Hori
117 schema:givenName Kentaro
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012240020752.09
119 rdf:type schema:Person
120 sg:pub.10.1007/978-3-663-14045-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035392954
121 https://doi.org/10.1007/978-3-663-14045-0
122 rdf:type schema:CreativeWork
123 sg:pub.10.1007/bf01208956 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028655831
124 https://doi.org/10.1007/bf01208956
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/bfb0078045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039903331
127 https://doi.org/10.1007/bfb0078045
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/jhep06(2013)005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051586061
130 https://doi.org/10.1007/jhep06(2013)005
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/jhep10(2013)121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025485605
133 https://doi.org/10.1007/jhep10(2013)121
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/s00220-008-0501-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1022065002
136 https://doi.org/10.1007/s00220-008-0501-x
137 rdf:type schema:CreativeWork
138 sg:pub.10.1007/s00220-014-2112-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1007928508
139 https://doi.org/10.1007/s00220-014-2112-z
140 rdf:type schema:CreativeWork
141 sg:pub.10.1007/s00222-004-0375-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008524964
142 https://doi.org/10.1007/s00222-004-0375-2
143 rdf:type schema:CreativeWork
144 sg:pub.10.1088/1126-6708/2000/02/028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023653878
145 https://doi.org/10.1088/1126-6708/2000/02/028
146 rdf:type schema:CreativeWork
147 sg:pub.10.1088/1126-6708/2007/05/079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005771754
148 https://doi.org/10.1088/1126-6708/2007/05/079
149 rdf:type schema:CreativeWork
150 grid-institutes:grid.26999.3d schema:alternateName Department of Physics, Faculty of Science, University of Tokyo, Bunkyo-ku, 133-0022, Tokyo, Japan
151 schema:name Department of Physics, Faculty of Science, University of Tokyo, Bunkyo-ku, 133-0022, Tokyo, Japan
152 rdf:type schema:Organization
153 grid-institutes:grid.36425.36 schema:alternateName Simons Center for Geometry and Physics, Stony Brook University, 11794, Stony Brook, NY, USA
154 schema:name Simons Center for Geometry and Physics, Stony Brook University, 11794, Stony Brook, NY, USA
155 rdf:type schema:Organization
156 grid-institutes:grid.440880.0 schema:alternateName Institute for the Physics and Mathematics of the Universe, University of Tokyo, 277-8583, Kashiwa, Chiba, Japan
157 schema:name Institute for the Physics and Mathematics of the Universe, University of Tokyo, 277-8583, Kashiwa, Chiba, Japan
158 rdf:type schema:Organization