Elliptic Genera of Two-Dimensional N=2 Gauge Theories with Rank-One Gauge Groups View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-11-30

AUTHORS

Francesco Benini, Richard Eager, Kentaro Hori, Yuji Tachikawa

ABSTRACT

We compute the elliptic genera of two-dimensional N=(2,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{N} = (2, 2)}$$\end{document} and N=(0,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{N} = (0, 2)}$$\end{document} -gauged linear sigma models via supersymmetric localization, for rank-one gauge groups. The elliptic genus is expressed as a sum over residues of a meromorphic function whose argument is the holonomy of the gauge field along both the spatial and the temporal directions of the torus. We illustrate our formulas by a few examples including the quintic Calabiā€“Yau, N=(2,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{N} = (2, 2)}$$\end{document} SU(2) and O(2) gauge theories coupled to N fundamental chiral multiplets, and a geometric N=(0,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{N} = (0, 2)}$$\end{document} model. More... »

PAGES

465-493

References to SciGraph publications

  • 1988. The index of the dirac operator in loop space in ELLIPTIC CURVES AND MODULAR FORMS IN ALGEBRAIC TOPOLOGY
  • 1987-12. Elliptic genera and quantum field theory in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2008-05-09. Equivariant Volumes of Non-Compact Quotients and Instanton Counting in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2013-06-03. Two-dimensional SCFTs from wrapped branes and c-extremization in JOURNAL OF HIGH ENERGY PHYSICS
  • 2014-07-17. Partition Functions of N=(2,2) Gauge Theories on S2 and Vortices in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1992. Manifolds and Modular Forms in NONE
  • 2000-02-16. Generalization of Calabi-Yau/Landau-Ginzburg correspondence in JOURNAL OF HIGH ENERGY PHYSICS
  • 2007-05-25. Aspects of non-abelian gauge dynamics in two-dimensional š¯’© = (2,2) theories in JOURNAL OF HIGH ENERGY PHYSICS
  • 2004-12-01. Toric reduction and a conjecture of Batyrev and Materov in INVENTIONES MATHEMATICAE
  • 2013-10-21. Duality in two-dimensional (2,2) supersymmetric non-Abelian gauge theories in JOURNAL OF HIGH ENERGY PHYSICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11005-013-0673-y

    DOI

    http://dx.doi.org/10.1007/s11005-013-0673-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1045565737


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Simons Center for Geometry and Physics, Stony Brook University, 11794, Stony Brook, NY, USA", 
              "id": "http://www.grid.ac/institutes/grid.36425.36", 
              "name": [
                "Simons Center for Geometry and Physics, Stony Brook University, 11794, Stony Brook, NY, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Benini", 
            "givenName": "Francesco", 
            "id": "sg:person.011505670225.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011505670225.30"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for the Physics and Mathematics of the Universe, University of Tokyo, 277-8583, Kashiwa, Chiba, Japan", 
              "id": "http://www.grid.ac/institutes/grid.440880.0", 
              "name": [
                "Institute for the Physics and Mathematics of the Universe, University of Tokyo, 277-8583, Kashiwa, Chiba, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Eager", 
            "givenName": "Richard", 
            "id": "sg:person.010047477352.47", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010047477352.47"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institute for the Physics and Mathematics of the Universe, University of Tokyo, 277-8583, Kashiwa, Chiba, Japan", 
              "id": "http://www.grid.ac/institutes/grid.440880.0", 
              "name": [
                "Institute for the Physics and Mathematics of the Universe, University of Tokyo, 277-8583, Kashiwa, Chiba, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hori", 
            "givenName": "Kentaro", 
            "id": "sg:person.012240020752.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012240020752.09"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Physics, Faculty of Science, University of Tokyo, Bunkyo-ku, 133-0022, Tokyo, Japan", 
              "id": "http://www.grid.ac/institutes/grid.26999.3d", 
              "name": [
                "Department of Physics, Faculty of Science, University of Tokyo, Bunkyo-ku, 133-0022, Tokyo, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tachikawa", 
            "givenName": "Yuji", 
            "id": "sg:person.010520672276.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010520672276.19"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1088/1126-6708/2007/05/079", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005771754", 
              "https://doi.org/10.1088/1126-6708/2007/05/079"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1088/1126-6708/2000/02/028", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023653878", 
              "https://doi.org/10.1088/1126-6708/2000/02/028"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-008-0501-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022065002", 
              "https://doi.org/10.1007/s00220-008-0501-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01208956", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028655831", 
              "https://doi.org/10.1007/bf01208956"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-014-2112-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007928508", 
              "https://doi.org/10.1007/s00220-014-2112-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-663-14045-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035392954", 
              "https://doi.org/10.1007/978-3-663-14045-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep10(2013)121", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025485605", 
              "https://doi.org/10.1007/jhep10(2013)121"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/jhep06(2013)005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051586061", 
              "https://doi.org/10.1007/jhep06(2013)005"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00222-004-0375-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008524964", 
              "https://doi.org/10.1007/s00222-004-0375-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bfb0078045", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039903331", 
              "https://doi.org/10.1007/bfb0078045"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2013-11-30", 
        "datePublishedReg": "2013-11-30", 
        "description": "We compute the elliptic genera of two-dimensional N=(2,2)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\mathcal{N} = (2, 2)}$$\\end{document} and N=(0,2)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\mathcal{N} = (0, 2)}$$\\end{document} -gauged linear sigma models via supersymmetric localization, for rank-one gauge groups. The elliptic genus is expressed as a sum over residues of a meromorphic function whose argument is the holonomy of the gauge field along both the spatial and the temporal directions of the torus. We illustrate our formulas by a few examples including the quintic Calabi\u2013Yau, N=(2,2)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\mathcal{N} = (2, 2)}$$\\end{document} SU(2) and O(2) gauge theories coupled to N fundamental chiral multiplets, and a geometric N=(0,2)\\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\mathcal{N} = (0, 2)}$$\\end{document} model.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11005-013-0673-y", 
        "isAccessibleForFree": true, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.6012161", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.6126781", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1327584", 
            "issn": [
              "0377-9017", 
              "1573-0530"
            ], 
            "name": "Letters in Mathematical Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "104"
          }
        ], 
        "keywords": [
          "elliptic genus", 
          "gauge theory", 
          "gauge group", 
          "gauged linear sigma models", 
          "fundamental chiral multiplets", 
          "quintic Calabi\u2013Yau", 
          "linear sigma model", 
          "sigma model", 
          "Calabi-Yau", 
          "gauge fields", 
          "supersymmetric localization", 
          "chiral multiplets", 
          "meromorphic functions", 
          "temporal direction", 
          "theory", 
          "holonomy", 
          "torus", 
          "model", 
          "multiplets", 
          "formula", 
          "sum", 
          "field", 
          "function", 
          "direction", 
          "argument", 
          "localization", 
          "group", 
          "genus", 
          "residues", 
          "example"
        ], 
        "name": "Elliptic Genera of Two-Dimensional N=2 Gauge Theories with Rank-One Gauge Groups", 
        "pagination": "465-493", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1045565737"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11005-013-0673-y"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11005-013-0673-y", 
          "https://app.dimensions.ai/details/publication/pub.1045565737"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:31", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_611.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11005-013-0673-y"
      }
    ]
     

    Download the RDF metadata as:Ā  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11005-013-0673-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11005-013-0673-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11005-013-0673-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11005-013-0673-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    158 TRIPLES      21 PREDICATES      64 URIs      46 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11005-013-0673-y schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N8f16fb82a33b4596b8ad6ce41e8db59e
    4 schema:citation sg:pub.10.1007/978-3-663-14045-0
    5 sg:pub.10.1007/bf01208956
    6 sg:pub.10.1007/bfb0078045
    7 sg:pub.10.1007/jhep06(2013)005
    8 sg:pub.10.1007/jhep10(2013)121
    9 sg:pub.10.1007/s00220-008-0501-x
    10 sg:pub.10.1007/s00220-014-2112-z
    11 sg:pub.10.1007/s00222-004-0375-2
    12 sg:pub.10.1088/1126-6708/2000/02/028
    13 sg:pub.10.1088/1126-6708/2007/05/079
    14 schema:datePublished 2013-11-30
    15 schema:datePublishedReg 2013-11-30
    16 schema:description We compute the elliptic genera of two-dimensional N=(2,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{N} = (2, 2)}$$\end{document} and N=(0,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{N} = (0, 2)}$$\end{document} -gauged linear sigma models via supersymmetric localization, for rank-one gauge groups. The elliptic genus is expressed as a sum over residues of a meromorphic function whose argument is the holonomy of the gauge field along both the spatial and the temporal directions of the torus. We illustrate our formulas by a few examples including the quintic Calabiā€“Yau, N=(2,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{N} = (2, 2)}$$\end{document} SU(2) and O(2) gauge theories coupled to N fundamental chiral multiplets, and a geometric N=(0,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{N} = (0, 2)}$$\end{document} model.
    17 schema:genre article
    18 schema:isAccessibleForFree true
    19 schema:isPartOf N71798482991c492abf85ce36fc89a309
    20 N8277cb6ed36c480680ba6af7e5d1a01e
    21 sg:journal.1327584
    22 schema:keywords Calabi-Yau
    23 argument
    24 chiral multiplets
    25 direction
    26 elliptic genus
    27 example
    28 field
    29 formula
    30 function
    31 fundamental chiral multiplets
    32 gauge fields
    33 gauge group
    34 gauge theory
    35 gauged linear sigma models
    36 genus
    37 group
    38 holonomy
    39 linear sigma model
    40 localization
    41 meromorphic functions
    42 model
    43 multiplets
    44 quintic Calabiā€“Yau
    45 residues
    46 sigma model
    47 sum
    48 supersymmetric localization
    49 temporal direction
    50 theory
    51 torus
    52 schema:name Elliptic Genera of Two-Dimensional N=2 Gauge Theories with Rank-One Gauge Groups
    53 schema:pagination 465-493
    54 schema:productId N54f04aebf3274a1eb66263cc74f66888
    55 Ne7316caddac94b1ca1a5b220f64a1651
    56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045565737
    57 https://doi.org/10.1007/s11005-013-0673-y
    58 schema:sdDatePublished 2022-12-01T06:31
    59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    60 schema:sdPublisher Na91cdfa2bb92430cbdce330fabd64cd3
    61 schema:url https://doi.org/10.1007/s11005-013-0673-y
    62 sgo:license sg:explorer/license/
    63 sgo:sdDataset articles
    64 rdf:type schema:ScholarlyArticle
    65 N2dfb3d4d20274c569f308f79a5ad5c40 rdf:first sg:person.012240020752.09
    66 rdf:rest Nad12350d5cab436b98b317b5578cfe4a
    67 N54f04aebf3274a1eb66263cc74f66888 schema:name dimensions_id
    68 schema:value pub.1045565737
    69 rdf:type schema:PropertyValue
    70 N71798482991c492abf85ce36fc89a309 schema:volumeNumber 104
    71 rdf:type schema:PublicationVolume
    72 N8277cb6ed36c480680ba6af7e5d1a01e schema:issueNumber 4
    73 rdf:type schema:PublicationIssue
    74 N8f16fb82a33b4596b8ad6ce41e8db59e rdf:first sg:person.011505670225.30
    75 rdf:rest Nb8a786739d0646b1a54f19611fd85c9b
    76 Na91cdfa2bb92430cbdce330fabd64cd3 schema:name Springer Nature - SN SciGraph project
    77 rdf:type schema:Organization
    78 Nad12350d5cab436b98b317b5578cfe4a rdf:first sg:person.010520672276.19
    79 rdf:rest rdf:nil
    80 Nb8a786739d0646b1a54f19611fd85c9b rdf:first sg:person.010047477352.47
    81 rdf:rest N2dfb3d4d20274c569f308f79a5ad5c40
    82 Ne7316caddac94b1ca1a5b220f64a1651 schema:name doi
    83 schema:value 10.1007/s11005-013-0673-y
    84 rdf:type schema:PropertyValue
    85 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    86 schema:name Mathematical Sciences
    87 rdf:type schema:DefinedTerm
    88 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    89 schema:name Pure Mathematics
    90 rdf:type schema:DefinedTerm
    91 sg:grant.6012161 http://pending.schema.org/fundedItem sg:pub.10.1007/s11005-013-0673-y
    92 rdf:type schema:MonetaryGrant
    93 sg:grant.6126781 http://pending.schema.org/fundedItem sg:pub.10.1007/s11005-013-0673-y
    94 rdf:type schema:MonetaryGrant
    95 sg:journal.1327584 schema:issn 0377-9017
    96 1573-0530
    97 schema:name Letters in Mathematical Physics
    98 schema:publisher Springer Nature
    99 rdf:type schema:Periodical
    100 sg:person.010047477352.47 schema:affiliation grid-institutes:grid.440880.0
    101 schema:familyName Eager
    102 schema:givenName Richard
    103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010047477352.47
    104 rdf:type schema:Person
    105 sg:person.010520672276.19 schema:affiliation grid-institutes:grid.26999.3d
    106 schema:familyName Tachikawa
    107 schema:givenName Yuji
    108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010520672276.19
    109 rdf:type schema:Person
    110 sg:person.011505670225.30 schema:affiliation grid-institutes:grid.36425.36
    111 schema:familyName Benini
    112 schema:givenName Francesco
    113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011505670225.30
    114 rdf:type schema:Person
    115 sg:person.012240020752.09 schema:affiliation grid-institutes:grid.440880.0
    116 schema:familyName Hori
    117 schema:givenName Kentaro
    118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012240020752.09
    119 rdf:type schema:Person
    120 sg:pub.10.1007/978-3-663-14045-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035392954
    121 https://doi.org/10.1007/978-3-663-14045-0
    122 rdf:type schema:CreativeWork
    123 sg:pub.10.1007/bf01208956 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028655831
    124 https://doi.org/10.1007/bf01208956
    125 rdf:type schema:CreativeWork
    126 sg:pub.10.1007/bfb0078045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039903331
    127 https://doi.org/10.1007/bfb0078045
    128 rdf:type schema:CreativeWork
    129 sg:pub.10.1007/jhep06(2013)005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051586061
    130 https://doi.org/10.1007/jhep06(2013)005
    131 rdf:type schema:CreativeWork
    132 sg:pub.10.1007/jhep10(2013)121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025485605
    133 https://doi.org/10.1007/jhep10(2013)121
    134 rdf:type schema:CreativeWork
    135 sg:pub.10.1007/s00220-008-0501-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1022065002
    136 https://doi.org/10.1007/s00220-008-0501-x
    137 rdf:type schema:CreativeWork
    138 sg:pub.10.1007/s00220-014-2112-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1007928508
    139 https://doi.org/10.1007/s00220-014-2112-z
    140 rdf:type schema:CreativeWork
    141 sg:pub.10.1007/s00222-004-0375-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008524964
    142 https://doi.org/10.1007/s00222-004-0375-2
    143 rdf:type schema:CreativeWork
    144 sg:pub.10.1088/1126-6708/2000/02/028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023653878
    145 https://doi.org/10.1088/1126-6708/2000/02/028
    146 rdf:type schema:CreativeWork
    147 sg:pub.10.1088/1126-6708/2007/05/079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005771754
    148 https://doi.org/10.1088/1126-6708/2007/05/079
    149 rdf:type schema:CreativeWork
    150 grid-institutes:grid.26999.3d schema:alternateName Department of Physics, Faculty of Science, University of Tokyo, Bunkyo-ku, 133-0022, Tokyo, Japan
    151 schema:name Department of Physics, Faculty of Science, University of Tokyo, Bunkyo-ku, 133-0022, Tokyo, Japan
    152 rdf:type schema:Organization
    153 grid-institutes:grid.36425.36 schema:alternateName Simons Center for Geometry and Physics, Stony Brook University, 11794, Stony Brook, NY, USA
    154 schema:name Simons Center for Geometry and Physics, Stony Brook University, 11794, Stony Brook, NY, USA
    155 rdf:type schema:Organization
    156 grid-institutes:grid.440880.0 schema:alternateName Institute for the Physics and Mathematics of the Universe, University of Tokyo, 277-8583, Kashiwa, Chiba, Japan
    157 schema:name Institute for the Physics and Mathematics of the Universe, University of Tokyo, 277-8583, Kashiwa, Chiba, Japan
    158 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...