Canonical Basis for Quantum View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2013-02

AUTHORS

Sean Clark, Weiqiang Wang

ABSTRACT

We introduce a modified quantum enveloping algebra as well as a (modified) covering quantum algebra for the ortho-symplectic Lie superalgebra . Then we formulate and compute the corresponding canonical bases, and relate them to the counterpart for . This provides a first example of canonical basis for quantum superalgebras.

PAGES

207-231

References to SciGraph publications

  • 1989-08. Universal R-matrix of the quantum superalgebra osp(2 | 1) in LETTERS IN MATHEMATICAL PHYSICS
  • 1997-06. Scasimir Operator, Scentre and Representations of Uq(osp(1|2)) in LETTERS IN MATHEMATICAL PHYSICS
  • Journal

    TITLE

    Letters in Mathematical Physics

    ISSUE

    2

    VOLUME

    103

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11005-012-0592-3

    DOI

    http://dx.doi.org/10.1007/s11005-012-0592-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1025163395


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Quantum Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Virginia", 
              "id": "https://www.grid.ac/institutes/grid.27755.32", 
              "name": [
                "Department of Mathematics, University of Virginia, 22904, Charlottesville, VA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Clark", 
            "givenName": "Sean", 
            "id": "sg:person.015254637620.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015254637620.12"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "University of Virginia", 
              "id": "https://www.grid.ac/institutes/grid.27755.32", 
              "name": [
                "Department of Mathematics, University of Virginia, 22904, Charlottesville, VA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wang", 
            "givenName": "Weiqiang", 
            "id": "sg:person.01301012154.81", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301012154.81"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00401868", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011619792", 
              "https://doi.org/10.1007/bf00401868"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00401868", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011619792", 
              "https://doi.org/10.1007/bf00401868"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jabr.2000.8590", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012992297"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.aim.2010.06.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014306387"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0022-4049(97)00088-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015095951"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1090/s0894-0347-1990-1035415-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027548652"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1007359625264", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048691233", 
              "https://doi.org/10.1023/a:1007359625264"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1142/s0218216510007851", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062966152"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1215/s0012-7094-90-06124-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064419626"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1215/s0012-7094-91-06321-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1064419691"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2013-02", 
        "datePublishedReg": "2013-02-01", 
        "description": "We introduce a modified quantum enveloping algebra as well as a (modified) covering quantum algebra for the ortho-symplectic Lie superalgebra . Then we formulate and compute the corresponding canonical bases, and relate them to the counterpart for . This provides a first example of canonical basis for quantum superalgebras.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11005-012-0592-3", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1327584", 
            "issn": [
              "0377-9017", 
              "1573-0530"
            ], 
            "name": "Letters in Mathematical Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "103"
          }
        ], 
        "name": "Canonical Basis for Quantum", 
        "pagination": "207-231", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "77e0fba74c0d7db06e36e20552feba1614e21283ce828395e54d9ef65b5cb84f"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11005-012-0592-3"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1025163395"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11005-012-0592-3", 
          "https://app.dimensions.ai/details/publication/pub.1025163395"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T23:28", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000532.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs11005-012-0592-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11005-012-0592-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11005-012-0592-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11005-012-0592-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11005-012-0592-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    97 TRIPLES      21 PREDICATES      36 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11005-012-0592-3 schema:about anzsrc-for:02
    2 anzsrc-for:0206
    3 schema:author Ncabb68994261440596a18e7633c49c80
    4 schema:citation sg:pub.10.1007/bf00401868
    5 sg:pub.10.1023/a:1007359625264
    6 https://doi.org/10.1006/jabr.2000.8590
    7 https://doi.org/10.1016/j.aim.2010.06.003
    8 https://doi.org/10.1016/s0022-4049(97)00088-1
    9 https://doi.org/10.1090/s0894-0347-1990-1035415-6
    10 https://doi.org/10.1142/s0218216510007851
    11 https://doi.org/10.1215/s0012-7094-90-06124-1
    12 https://doi.org/10.1215/s0012-7094-91-06321-0
    13 schema:datePublished 2013-02
    14 schema:datePublishedReg 2013-02-01
    15 schema:description We introduce a modified quantum enveloping algebra as well as a (modified) covering quantum algebra for the ortho-symplectic Lie superalgebra . Then we formulate and compute the corresponding canonical bases, and relate them to the counterpart for . This provides a first example of canonical basis for quantum superalgebras.
    16 schema:genre research_article
    17 schema:inLanguage en
    18 schema:isAccessibleForFree true
    19 schema:isPartOf Nc3abb7a700a94cb3a8a4cdb7126ba7d8
    20 Nfe3eebaa86ca431783afa9ae70ab7959
    21 sg:journal.1327584
    22 schema:name Canonical Basis for Quantum
    23 schema:pagination 207-231
    24 schema:productId N0a3e812b1e9249b7833a44c95d72e241
    25 N12c86b32761b49ec8ea32a989e5e027e
    26 Nc6d2066d41724aeca52cb6a04ac6387d
    27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025163395
    28 https://doi.org/10.1007/s11005-012-0592-3
    29 schema:sdDatePublished 2019-04-10T23:28
    30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    31 schema:sdPublisher Nccad92253f7949f29b6a966de5ac45dc
    32 schema:url http://link.springer.com/10.1007%2Fs11005-012-0592-3
    33 sgo:license sg:explorer/license/
    34 sgo:sdDataset articles
    35 rdf:type schema:ScholarlyArticle
    36 N0a3e812b1e9249b7833a44c95d72e241 schema:name dimensions_id
    37 schema:value pub.1025163395
    38 rdf:type schema:PropertyValue
    39 N12c86b32761b49ec8ea32a989e5e027e schema:name readcube_id
    40 schema:value 77e0fba74c0d7db06e36e20552feba1614e21283ce828395e54d9ef65b5cb84f
    41 rdf:type schema:PropertyValue
    42 N13d5b957e6de45b9aab429f2af961049 rdf:first sg:person.01301012154.81
    43 rdf:rest rdf:nil
    44 Nc3abb7a700a94cb3a8a4cdb7126ba7d8 schema:issueNumber 2
    45 rdf:type schema:PublicationIssue
    46 Nc6d2066d41724aeca52cb6a04ac6387d schema:name doi
    47 schema:value 10.1007/s11005-012-0592-3
    48 rdf:type schema:PropertyValue
    49 Ncabb68994261440596a18e7633c49c80 rdf:first sg:person.015254637620.12
    50 rdf:rest N13d5b957e6de45b9aab429f2af961049
    51 Nccad92253f7949f29b6a966de5ac45dc schema:name Springer Nature - SN SciGraph project
    52 rdf:type schema:Organization
    53 Nfe3eebaa86ca431783afa9ae70ab7959 schema:volumeNumber 103
    54 rdf:type schema:PublicationVolume
    55 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    56 schema:name Physical Sciences
    57 rdf:type schema:DefinedTerm
    58 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
    59 schema:name Quantum Physics
    60 rdf:type schema:DefinedTerm
    61 sg:journal.1327584 schema:issn 0377-9017
    62 1573-0530
    63 schema:name Letters in Mathematical Physics
    64 rdf:type schema:Periodical
    65 sg:person.01301012154.81 schema:affiliation https://www.grid.ac/institutes/grid.27755.32
    66 schema:familyName Wang
    67 schema:givenName Weiqiang
    68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01301012154.81
    69 rdf:type schema:Person
    70 sg:person.015254637620.12 schema:affiliation https://www.grid.ac/institutes/grid.27755.32
    71 schema:familyName Clark
    72 schema:givenName Sean
    73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015254637620.12
    74 rdf:type schema:Person
    75 sg:pub.10.1007/bf00401868 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011619792
    76 https://doi.org/10.1007/bf00401868
    77 rdf:type schema:CreativeWork
    78 sg:pub.10.1023/a:1007359625264 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048691233
    79 https://doi.org/10.1023/a:1007359625264
    80 rdf:type schema:CreativeWork
    81 https://doi.org/10.1006/jabr.2000.8590 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012992297
    82 rdf:type schema:CreativeWork
    83 https://doi.org/10.1016/j.aim.2010.06.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014306387
    84 rdf:type schema:CreativeWork
    85 https://doi.org/10.1016/s0022-4049(97)00088-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015095951
    86 rdf:type schema:CreativeWork
    87 https://doi.org/10.1090/s0894-0347-1990-1035415-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027548652
    88 rdf:type schema:CreativeWork
    89 https://doi.org/10.1142/s0218216510007851 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062966152
    90 rdf:type schema:CreativeWork
    91 https://doi.org/10.1215/s0012-7094-90-06124-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064419626
    92 rdf:type schema:CreativeWork
    93 https://doi.org/10.1215/s0012-7094-91-06321-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064419691
    94 rdf:type schema:CreativeWork
    95 https://www.grid.ac/institutes/grid.27755.32 schema:alternateName University of Virginia
    96 schema:name Department of Mathematics, University of Virginia, 22904, Charlottesville, VA, USA
    97 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...