Regularity for Eigenfunctions of Schrödinger Operators View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2012-03-18

AUTHORS

Bernd Ammann, Catarina Carvalho, Victor Nistor

ABSTRACT

We prove a regularity result in weighted Sobolev (or Babuška–Kondratiev) spaces for the eigenfunctions of certain Schrödinger-type operators. Our results apply, in particular, to a non-relativistic Schrödinger operator of an N-electron atom in the fixed nucleus approximation. More precisely, let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{K}_{a}^{m}(\mathbb{R}^{3N},r_S)}$$\end{document} be the weighted Sobolev space obtained by blowing up the set of singular points of the potential \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${V(x) = \sum_{1 \le j \le N} \frac{b_j}{|x_j|} + \sum_{1 \le i < j \le N} \frac{c_{ij}}{|x_i-x_j|}}$$\end{document} , \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${x \in \mathbb{R}^{3N}}$$\end{document} , \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${b_j, c_{ij} \in \mathbb{R}}$$\end{document} . If \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${u \in L^2(\mathbb{R}^{3N})}$$\end{document} satisfies \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(-\Delta + V) u = \lambda u}$$\end{document} in distribution sense, then \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${u \in \mathcal{K}_{a}^{m}}$$\end{document} for all \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${m \in \mathbb{Z}_+}$$\end{document} and all a ≤ 0. Our result extends to the case when bj and cij are suitable bounded functions on the blown-up space. In the single-electron, multi-nuclei case, we obtain the same result for all a < 3/2. More... »

PAGES

49-84

References to SciGraph publications

  • 2010-06-06. A New Proof of the Analyticity of the Electronic Density of Molecules in LETTERS IN MATHEMATICAL PHYSICS
  • 1995-01. Regularization of atomic Schrödinger operators with magnetic field in MATHEMATISCHE ZEITSCHRIFT
  • 2007-01-17. The hyperbolic cross space approximation of electronic wavefunctions in NUMERISCHE MATHEMATIK
  • 2010. Regularity and Approximability of Electronic Wave Functions in NONE
  • 2008-06-02. Semiclassical Resolvent Estimates for Schrödinger Operators with Coulomb Singularities in ANNALES HENRI POINCARÉ
  • 2005-01-11. Sharp Regularity Results for Coulombic Many-Electron Wave Functions in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1987. Schrödinger Operators, With Applications to Quantum Mechanics and Global Geometry in NONE
  • 2004-08-06. On the regularity of the electronic Schrödinger equation in Hilbert spaces of mixed derivatives in NUMERISCHE MATHEMATIK
  • 1966. Perturbation theory for linear operators in NONE
  • 1995. Perturbation Theory for Linear Operators in NONE
  • 1996. Partial Differential Equations II, Qualitative Studies of Linear Equations in NONE
  • 2008-12-10. Analytic Structure of Many-Body Coulombic Wave Functions in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 1981-03. Pointwise bounds on eigenfunctions and wave packets inN-body quantum systems in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2003-06. Bounded imaginary powers of differential operators on manifolds with conical singularities in MATHEMATISCHE ZEITSCHRIFT
  • 2011-02-05. Explicit Green operators for quantum mechanical Hamiltonians. I. The hydrogen atom in MANUSCRIPTA MATHEMATICA
  • 1998-04. On Eigenfunction Decay for Two Dimensional¶Magnetic Schrödinger Operators in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2001. Basics of the b-Calculus in APPROACHES TO SINGULAR ANALYSIS
  • 2001. Analysis of geometric operators on open manifolds: A groupoid approach in QUANTIZATION OF SINGULAR SYMPLECTIC QUOTIENTS
  • 1966. Multiple Integrals in the Calculus of Variations in NONE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11005-012-0551-z

    DOI

    http://dx.doi.org/10.1007/s11005-012-0551-z

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1052081297


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Fakult\u00e4t f\u00fcr Mathematik, Universit\u00e4t Regensburg, 93040, Regensburg, Germany", 
              "id": "http://www.grid.ac/institutes/grid.7727.5", 
              "name": [
                "Fakult\u00e4t f\u00fcr Mathematik, Universit\u00e4t Regensburg, 93040, Regensburg, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ammann", 
            "givenName": "Bernd", 
            "id": "sg:person.012055554205.70", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012055554205.70"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Mathematics Department, Instituto Superior T\u00e9cnico, UTL, Av. Rovisco Pais, 1049-001, Lisbon, Portugal", 
              "id": "http://www.grid.ac/institutes/grid.9983.b", 
              "name": [
                "Mathematics Department, Instituto Superior T\u00e9cnico, UTL, Av. Rovisco Pais, 1049-001, Lisbon, Portugal"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Carvalho", 
            "givenName": "Catarina", 
            "id": "sg:person.011030544300.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011030544300.49"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Mathematics Department, Pennsylvania State University, 16802, University Park, PA, USA", 
              "id": "http://www.grid.ac/institutes/grid.29857.31", 
              "name": [
                "Mathematics Department, Pennsylvania State University, 16802, University Park, PA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nistor", 
            "givenName": "Victor", 
            "id": "sg:person.011176764757.94", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011176764757.94"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s002200050314", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007666690", 
              "https://doi.org/10.1007/s002200050314"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-662-12678-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011943444", 
              "https://doi.org/10.1007/978-3-662-12678-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-69952-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043166905", 
              "https://doi.org/10.1007/978-3-540-69952-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-008-0664-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000039236", 
              "https://doi.org/10.1007/s00220-008-0664-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00023-008-0372-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037168641", 
              "https://doi.org/10.1007/s00023-008-0372-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-540-77522-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015703607", 
              "https://doi.org/10.1007/978-3-540-77522-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01213596", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003091750", 
              "https://doi.org/10.1007/bf01213596"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00211-003-0498-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007242893", 
              "https://doi.org/10.1007/s00211-003-0498-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-12248-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019081534", 
              "https://doi.org/10.1007/978-3-642-12248-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11005-010-0401-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002157486", 
              "https://doi.org/10.1007/s11005-010-0401-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00229-011-0429-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031670479", 
              "https://doi.org/10.1007/s00229-011-0429-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-642-66282-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1016619032", 
              "https://doi.org/10.1007/978-3-642-66282-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-0348-8364-1_8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1053165018", 
              "https://doi.org/10.1007/978-3-0348-8364-1_8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00220-004-1257-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028071009", 
              "https://doi.org/10.1007/s00220-004-1257-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02571913", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023498590", 
              "https://doi.org/10.1007/bf02571913"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-3-0348-8253-8_2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000023482", 
              "https://doi.org/10.1007/978-3-0348-8253-8_2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00211-006-0038-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048087704", 
              "https://doi.org/10.1007/s00211-006-0038-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4757-4187-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024831222", 
              "https://doi.org/10.1007/978-1-4757-4187-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00209-003-0495-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031232349", 
              "https://doi.org/10.1007/s00209-003-0495-1"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2012-03-18", 
        "datePublishedReg": "2012-03-18", 
        "description": "We prove a regularity result in weighted Sobolev (or Babu\u0161ka\u2013Kondratiev) spaces for the eigenfunctions of certain Schr\u00f6dinger-type operators. Our results apply, in particular, to a non-relativistic Schr\u00f6dinger operator of an N-electron atom in the fixed nucleus approximation. More precisely, let \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\mathcal{K}_{a}^{m}(\\mathbb{R}^{3N},r_S)}$$\\end{document} be the weighted Sobolev space obtained by blowing up the set of singular points of the potential \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${V(x) = \\sum_{1 \\le j \\le N} \\frac{b_j}{|x_j|} + \\sum_{1 \\le i  < j \\le N} \\frac{c_{ij}}{|x_i-x_j|}}$$\\end{document} , \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${x \\in \\mathbb{R}^{3N}}$$\\end{document} , \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${b_j, c_{ij} \\in \\mathbb{R}}$$\\end{document} . If \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${u \\in L^2(\\mathbb{R}^{3N})}$$\\end{document} satisfies \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${(-\\Delta + V) u = \\lambda u}$$\\end{document} in distribution sense, then \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${u \\in \\mathcal{K}_{a}^{m}}$$\\end{document} for all \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${m \\in \\mathbb{Z}_+}$$\\end{document} and all a \u2264 0. Our result extends to the case when bj and cij are suitable bounded functions on the blown-up space. In the single-electron, multi-nuclei case, we obtain the same result for all a\u00a0<\u00a03/2.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11005-012-0551-z", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1327584", 
            "issn": [
              "0377-9017", 
              "1573-0530"
            ], 
            "name": "Letters in Mathematical Physics", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "101"
          }
        ], 
        "keywords": [
          "Schr\u00f6dinger operators", 
          "N-electron atoms", 
          "Schr\u00f6dinger type operators", 
          "weighted Sobolev", 
          "regularity results", 
          "Sobolev spaces", 
          "singular points", 
          "distribution sense", 
          "eigenfunctions", 
          "nuclei approximation", 
          "operators", 
          "space", 
          "Sobolev", 
          "approximation", 
          "same results", 
          "satisfies", 
          "Cij", 
          "regularity", 
          "BJ", 
          "atoms", 
          "set", 
          "results", 
          "point", 
          "cases", 
          "sense", 
          "function"
        ], 
        "name": "Regularity for Eigenfunctions of Schr\u00f6dinger Operators", 
        "pagination": "49-84", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1052081297"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11005-012-0551-z"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11005-012-0551-z", 
          "https://app.dimensions.ai/details/publication/pub.1052081297"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-08-04T17:01", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_577.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11005-012-0551-z"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11005-012-0551-z'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11005-012-0551-z'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11005-012-0551-z'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11005-012-0551-z'


     

    This table displays all metadata directly associated to this object as RDF triples.

    179 TRIPLES      21 PREDICATES      69 URIs      42 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11005-012-0551-z schema:about anzsrc-for:02
    2 anzsrc-for:0202
    3 schema:author Nd17fe846aa7046989a7ce100ad13d067
    4 schema:citation sg:pub.10.1007/978-1-4757-4187-2
    5 sg:pub.10.1007/978-3-0348-8253-8_2
    6 sg:pub.10.1007/978-3-0348-8364-1_8
    7 sg:pub.10.1007/978-3-540-69952-1
    8 sg:pub.10.1007/978-3-540-77522-5
    9 sg:pub.10.1007/978-3-642-12248-4
    10 sg:pub.10.1007/978-3-642-66282-9
    11 sg:pub.10.1007/978-3-662-12678-3
    12 sg:pub.10.1007/bf01213596
    13 sg:pub.10.1007/bf02571913
    14 sg:pub.10.1007/s00023-008-0372-x
    15 sg:pub.10.1007/s00209-003-0495-1
    16 sg:pub.10.1007/s00211-003-0498-1
    17 sg:pub.10.1007/s00211-006-0038-x
    18 sg:pub.10.1007/s00220-004-1257-6
    19 sg:pub.10.1007/s00220-008-0664-5
    20 sg:pub.10.1007/s002200050314
    21 sg:pub.10.1007/s00229-011-0429-x
    22 sg:pub.10.1007/s11005-010-0401-9
    23 schema:datePublished 2012-03-18
    24 schema:datePublishedReg 2012-03-18
    25 schema:description We prove a regularity result in weighted Sobolev (or Babuška–Kondratiev) spaces for the eigenfunctions of certain Schrödinger-type operators. Our results apply, in particular, to a non-relativistic Schrödinger operator of an N-electron atom in the fixed nucleus approximation. More precisely, let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{K}_{a}^{m}(\mathbb{R}^{3N},r_S)}$$\end{document} be the weighted Sobolev space obtained by blowing up the set of singular points of the potential \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${V(x) = \sum_{1 \le j \le N} \frac{b_j}{|x_j|} + \sum_{1 \le i < j \le N} \frac{c_{ij}}{|x_i-x_j|}}$$\end{document} , \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${x \in \mathbb{R}^{3N}}$$\end{document} , \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${b_j, c_{ij} \in \mathbb{R}}$$\end{document} . If \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${u \in L^2(\mathbb{R}^{3N})}$$\end{document} satisfies \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(-\Delta + V) u = \lambda u}$$\end{document} in distribution sense, then \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${u \in \mathcal{K}_{a}^{m}}$$\end{document} for all \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${m \in \mathbb{Z}_+}$$\end{document} and all a ≤ 0. Our result extends to the case when bj and cij are suitable bounded functions on the blown-up space. In the single-electron, multi-nuclei case, we obtain the same result for all a < 3/2.
    26 schema:genre article
    27 schema:isAccessibleForFree true
    28 schema:isPartOf N12eb35f60e7e4a9f9262ded9779b15a7
    29 Na81bb448b7dc4afe929c645289325cf3
    30 sg:journal.1327584
    31 schema:keywords BJ
    32 Cij
    33 N-electron atoms
    34 Schrödinger operators
    35 Schrödinger type operators
    36 Sobolev
    37 Sobolev spaces
    38 approximation
    39 atoms
    40 cases
    41 distribution sense
    42 eigenfunctions
    43 function
    44 nuclei approximation
    45 operators
    46 point
    47 regularity
    48 regularity results
    49 results
    50 same results
    51 satisfies
    52 sense
    53 set
    54 singular points
    55 space
    56 weighted Sobolev
    57 schema:name Regularity for Eigenfunctions of Schrödinger Operators
    58 schema:pagination 49-84
    59 schema:productId N293aa5300a7d468e9bb64c94c8930b3c
    60 Nae144d6e536b4abeb507f0c7122c95f4
    61 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052081297
    62 https://doi.org/10.1007/s11005-012-0551-z
    63 schema:sdDatePublished 2022-08-04T17:01
    64 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    65 schema:sdPublisher Ncb4d7c40ef754225910292e2a7467a35
    66 schema:url https://doi.org/10.1007/s11005-012-0551-z
    67 sgo:license sg:explorer/license/
    68 sgo:sdDataset articles
    69 rdf:type schema:ScholarlyArticle
    70 N12eb35f60e7e4a9f9262ded9779b15a7 schema:volumeNumber 101
    71 rdf:type schema:PublicationVolume
    72 N293aa5300a7d468e9bb64c94c8930b3c schema:name dimensions_id
    73 schema:value pub.1052081297
    74 rdf:type schema:PropertyValue
    75 N7b42c95ea41348859d68af1ce220030e rdf:first sg:person.011030544300.49
    76 rdf:rest N9ea8281ca1d1434c888e09c94f6aa381
    77 N9ea8281ca1d1434c888e09c94f6aa381 rdf:first sg:person.011176764757.94
    78 rdf:rest rdf:nil
    79 Na81bb448b7dc4afe929c645289325cf3 schema:issueNumber 1
    80 rdf:type schema:PublicationIssue
    81 Nae144d6e536b4abeb507f0c7122c95f4 schema:name doi
    82 schema:value 10.1007/s11005-012-0551-z
    83 rdf:type schema:PropertyValue
    84 Ncb4d7c40ef754225910292e2a7467a35 schema:name Springer Nature - SN SciGraph project
    85 rdf:type schema:Organization
    86 Nd17fe846aa7046989a7ce100ad13d067 rdf:first sg:person.012055554205.70
    87 rdf:rest N7b42c95ea41348859d68af1ce220030e
    88 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    89 schema:name Physical Sciences
    90 rdf:type schema:DefinedTerm
    91 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
    92 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
    93 rdf:type schema:DefinedTerm
    94 sg:journal.1327584 schema:issn 0377-9017
    95 1573-0530
    96 schema:name Letters in Mathematical Physics
    97 schema:publisher Springer Nature
    98 rdf:type schema:Periodical
    99 sg:person.011030544300.49 schema:affiliation grid-institutes:grid.9983.b
    100 schema:familyName Carvalho
    101 schema:givenName Catarina
    102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011030544300.49
    103 rdf:type schema:Person
    104 sg:person.011176764757.94 schema:affiliation grid-institutes:grid.29857.31
    105 schema:familyName Nistor
    106 schema:givenName Victor
    107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011176764757.94
    108 rdf:type schema:Person
    109 sg:person.012055554205.70 schema:affiliation grid-institutes:grid.7727.5
    110 schema:familyName Ammann
    111 schema:givenName Bernd
    112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012055554205.70
    113 rdf:type schema:Person
    114 sg:pub.10.1007/978-1-4757-4187-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024831222
    115 https://doi.org/10.1007/978-1-4757-4187-2
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1007/978-3-0348-8253-8_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000023482
    118 https://doi.org/10.1007/978-3-0348-8253-8_2
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1007/978-3-0348-8364-1_8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053165018
    121 https://doi.org/10.1007/978-3-0348-8364-1_8
    122 rdf:type schema:CreativeWork
    123 sg:pub.10.1007/978-3-540-69952-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043166905
    124 https://doi.org/10.1007/978-3-540-69952-1
    125 rdf:type schema:CreativeWork
    126 sg:pub.10.1007/978-3-540-77522-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015703607
    127 https://doi.org/10.1007/978-3-540-77522-5
    128 rdf:type schema:CreativeWork
    129 sg:pub.10.1007/978-3-642-12248-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019081534
    130 https://doi.org/10.1007/978-3-642-12248-4
    131 rdf:type schema:CreativeWork
    132 sg:pub.10.1007/978-3-642-66282-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016619032
    133 https://doi.org/10.1007/978-3-642-66282-9
    134 rdf:type schema:CreativeWork
    135 sg:pub.10.1007/978-3-662-12678-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011943444
    136 https://doi.org/10.1007/978-3-662-12678-3
    137 rdf:type schema:CreativeWork
    138 sg:pub.10.1007/bf01213596 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003091750
    139 https://doi.org/10.1007/bf01213596
    140 rdf:type schema:CreativeWork
    141 sg:pub.10.1007/bf02571913 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023498590
    142 https://doi.org/10.1007/bf02571913
    143 rdf:type schema:CreativeWork
    144 sg:pub.10.1007/s00023-008-0372-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1037168641
    145 https://doi.org/10.1007/s00023-008-0372-x
    146 rdf:type schema:CreativeWork
    147 sg:pub.10.1007/s00209-003-0495-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031232349
    148 https://doi.org/10.1007/s00209-003-0495-1
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1007/s00211-003-0498-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007242893
    151 https://doi.org/10.1007/s00211-003-0498-1
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1007/s00211-006-0038-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1048087704
    154 https://doi.org/10.1007/s00211-006-0038-x
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1007/s00220-004-1257-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028071009
    157 https://doi.org/10.1007/s00220-004-1257-6
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1007/s00220-008-0664-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000039236
    160 https://doi.org/10.1007/s00220-008-0664-5
    161 rdf:type schema:CreativeWork
    162 sg:pub.10.1007/s002200050314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007666690
    163 https://doi.org/10.1007/s002200050314
    164 rdf:type schema:CreativeWork
    165 sg:pub.10.1007/s00229-011-0429-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1031670479
    166 https://doi.org/10.1007/s00229-011-0429-x
    167 rdf:type schema:CreativeWork
    168 sg:pub.10.1007/s11005-010-0401-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002157486
    169 https://doi.org/10.1007/s11005-010-0401-9
    170 rdf:type schema:CreativeWork
    171 grid-institutes:grid.29857.31 schema:alternateName Mathematics Department, Pennsylvania State University, 16802, University Park, PA, USA
    172 schema:name Mathematics Department, Pennsylvania State University, 16802, University Park, PA, USA
    173 rdf:type schema:Organization
    174 grid-institutes:grid.7727.5 schema:alternateName Fakultät für Mathematik, Universität Regensburg, 93040, Regensburg, Germany
    175 schema:name Fakultät für Mathematik, Universität Regensburg, 93040, Regensburg, Germany
    176 rdf:type schema:Organization
    177 grid-institutes:grid.9983.b schema:alternateName Mathematics Department, Instituto Superior Técnico, UTL, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
    178 schema:name Mathematics Department, Instituto Superior Técnico, UTL, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
    179 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...