Ontology type: schema:ScholarlyArticle Open Access: True
2012-03-18
AUTHORSBernd Ammann, Catarina Carvalho, Victor Nistor
ABSTRACTWe prove a regularity result in weighted Sobolev (or Babuška–Kondratiev) spaces for the eigenfunctions of certain Schrödinger-type operators. Our results apply, in particular, to a non-relativistic Schrödinger operator of an N-electron atom in the fixed nucleus approximation. More precisely, let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal{K}_{a}^{m}(\mathbb{R}^{3N},r_S)}$$\end{document} be the weighted Sobolev space obtained by blowing up the set of singular points of the potential \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${V(x) = \sum_{1 \le j \le N} \frac{b_j}{|x_j|} + \sum_{1 \le i < j \le N} \frac{c_{ij}}{|x_i-x_j|}}$$\end{document} , \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${x \in \mathbb{R}^{3N}}$$\end{document} , \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${b_j, c_{ij} \in \mathbb{R}}$$\end{document} . If \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${u \in L^2(\mathbb{R}^{3N})}$$\end{document} satisfies \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(-\Delta + V) u = \lambda u}$$\end{document} in distribution sense, then \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${u \in \mathcal{K}_{a}^{m}}$$\end{document} for all \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${m \in \mathbb{Z}_+}$$\end{document} and all a ≤ 0. Our result extends to the case when bj and cij are suitable bounded functions on the blown-up space. In the single-electron, multi-nuclei case, we obtain the same result for all a < 3/2. More... »
PAGES49-84
http://scigraph.springernature.com/pub.10.1007/s11005-012-0551-z
DOIhttp://dx.doi.org/10.1007/s11005-012-0551-z
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1052081297
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Fakult\u00e4t f\u00fcr Mathematik, Universit\u00e4t Regensburg, 93040, Regensburg, Germany",
"id": "http://www.grid.ac/institutes/grid.7727.5",
"name": [
"Fakult\u00e4t f\u00fcr Mathematik, Universit\u00e4t Regensburg, 93040, Regensburg, Germany"
],
"type": "Organization"
},
"familyName": "Ammann",
"givenName": "Bernd",
"id": "sg:person.012055554205.70",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012055554205.70"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Mathematics Department, Instituto Superior T\u00e9cnico, UTL, Av. Rovisco Pais, 1049-001, Lisbon, Portugal",
"id": "http://www.grid.ac/institutes/grid.9983.b",
"name": [
"Mathematics Department, Instituto Superior T\u00e9cnico, UTL, Av. Rovisco Pais, 1049-001, Lisbon, Portugal"
],
"type": "Organization"
},
"familyName": "Carvalho",
"givenName": "Catarina",
"id": "sg:person.011030544300.49",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011030544300.49"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Mathematics Department, Pennsylvania State University, 16802, University Park, PA, USA",
"id": "http://www.grid.ac/institutes/grid.29857.31",
"name": [
"Mathematics Department, Pennsylvania State University, 16802, University Park, PA, USA"
],
"type": "Organization"
},
"familyName": "Nistor",
"givenName": "Victor",
"id": "sg:person.011176764757.94",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011176764757.94"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/s002200050314",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007666690",
"https://doi.org/10.1007/s002200050314"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-662-12678-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1011943444",
"https://doi.org/10.1007/978-3-662-12678-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-69952-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043166905",
"https://doi.org/10.1007/978-3-540-69952-1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00220-008-0664-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000039236",
"https://doi.org/10.1007/s00220-008-0664-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00023-008-0372-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1037168641",
"https://doi.org/10.1007/s00023-008-0372-x"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-540-77522-5",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015703607",
"https://doi.org/10.1007/978-3-540-77522-5"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01213596",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1003091750",
"https://doi.org/10.1007/bf01213596"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00211-003-0498-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007242893",
"https://doi.org/10.1007/s00211-003-0498-1"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-12248-4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1019081534",
"https://doi.org/10.1007/978-3-642-12248-4"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s11005-010-0401-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1002157486",
"https://doi.org/10.1007/s11005-010-0401-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00229-011-0429-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031670479",
"https://doi.org/10.1007/s00229-011-0429-x"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-66282-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1016619032",
"https://doi.org/10.1007/978-3-642-66282-9"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-0348-8364-1_8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1053165018",
"https://doi.org/10.1007/978-3-0348-8364-1_8"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00220-004-1257-6",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1028071009",
"https://doi.org/10.1007/s00220-004-1257-6"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02571913",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1023498590",
"https://doi.org/10.1007/bf02571913"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-0348-8253-8_2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000023482",
"https://doi.org/10.1007/978-3-0348-8253-8_2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00211-006-0038-x",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1048087704",
"https://doi.org/10.1007/s00211-006-0038-x"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4757-4187-2",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024831222",
"https://doi.org/10.1007/978-1-4757-4187-2"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s00209-003-0495-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1031232349",
"https://doi.org/10.1007/s00209-003-0495-1"
],
"type": "CreativeWork"
}
],
"datePublished": "2012-03-18",
"datePublishedReg": "2012-03-18",
"description": "We prove a regularity result in weighted Sobolev (or Babu\u0161ka\u2013Kondratiev) spaces for the eigenfunctions of certain Schr\u00f6dinger-type operators. Our results apply, in particular, to a non-relativistic Schr\u00f6dinger operator of an N-electron atom in the fixed nucleus approximation. More precisely, let \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${\\mathcal{K}_{a}^{m}(\\mathbb{R}^{3N},r_S)}$$\\end{document} be the weighted Sobolev space obtained by blowing up the set of singular points of the potential \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${V(x) = \\sum_{1 \\le j \\le N} \\frac{b_j}{|x_j|} + \\sum_{1 \\le i < j \\le N} \\frac{c_{ij}}{|x_i-x_j|}}$$\\end{document} , \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${x \\in \\mathbb{R}^{3N}}$$\\end{document} , \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${b_j, c_{ij} \\in \\mathbb{R}}$$\\end{document} . If \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${u \\in L^2(\\mathbb{R}^{3N})}$$\\end{document} satisfies \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${(-\\Delta + V) u = \\lambda u}$$\\end{document} in distribution sense, then \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${u \\in \\mathcal{K}_{a}^{m}}$$\\end{document} for all \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$${m \\in \\mathbb{Z}_+}$$\\end{document} and all a \u2264 0. Our result extends to the case when bj and cij are suitable bounded functions on the blown-up space. In the single-electron, multi-nuclei case, we obtain the same result for all a\u00a0<\u00a03/2.",
"genre": "article",
"id": "sg:pub.10.1007/s11005-012-0551-z",
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1327584",
"issn": [
"0377-9017",
"1573-0530"
],
"name": "Letters in Mathematical Physics",
"publisher": "Springer Nature",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "101"
}
],
"keywords": [
"Schr\u00f6dinger operators",
"N-electron atoms",
"Schr\u00f6dinger type operators",
"weighted Sobolev",
"regularity results",
"Sobolev spaces",
"singular points",
"distribution sense",
"eigenfunctions",
"nuclei approximation",
"operators",
"space",
"Sobolev",
"approximation",
"same results",
"satisfies",
"Cij",
"regularity",
"BJ",
"atoms",
"set",
"results",
"point",
"cases",
"sense",
"function"
],
"name": "Regularity for Eigenfunctions of Schr\u00f6dinger Operators",
"pagination": "49-84",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1052081297"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/s11005-012-0551-z"
]
}
],
"sameAs": [
"https://doi.org/10.1007/s11005-012-0551-z",
"https://app.dimensions.ai/details/publication/pub.1052081297"
],
"sdDataset": "articles",
"sdDatePublished": "2022-08-04T17:01",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_577.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1007/s11005-012-0551-z"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11005-012-0551-z'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11005-012-0551-z'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11005-012-0551-z'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11005-012-0551-z'
This table displays all metadata directly associated to this object as RDF triples.
179 TRIPLES
21 PREDICATES
69 URIs
42 LITERALS
6 BLANK NODES